Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(\left(x-y+z\right)\left(x-y-z\right)\)
\(=\left(x-y\right)^2-z^2\)(hằng đẳng thức số 3)
b, Sửa đề:\(\left(\dfrac{1}{2}x+y-z\right)\left(\dfrac{1}{2}x+y+z\right)\)
\(=\left(\dfrac{1}{2}x+y\right)^2-z^2\)(hằng đẳng thức số 3)
Chúc bạn học tốt!!!
a, (x + y + z)(x - y - z)
= x^2 - xy - xz + xy - y^2 - zy + zx - zy - z^2
= x^2 + y^2 + z^2 + (xy - xy) + (xz - xz) - (zy + zy)
= x^2 + y^2 + z^2 - 2zy
b, (x - y + z)(x + y + z)
= x^2 + xy + xz - xy - y^2 - zy + zx + zy + z^2
= x^2 + y^2 + z^2 + (xy - xy) + xz + xz + (zy - zy)
= x^2 + y^2 + z^2 + 2zx
\(a.\left(x+y+z\right)^2=x^2+y^2+z^2+2xy+2yz+2xz\\ b.\left(x-y+z\right)^2=x^2+y^2+z^2-2xy-2yz+2xz\\ c.\left(x-y-z\right)^2=x^2+y^2+z^2-2xy+2yz-2xz\)
a, \(\left(x+y+z\right)^2=x^2+y^2+c^2+2xy+2yz+2zx\)
b, \(\left(x-y-z\right)^2=x^2+y^2+z^2-2xy+2yz-2zx\)
c, \(\left(x-y+z\right)^2=x^2+y^2+z^2-2xy-2yz+2xz\)
a: \(\left(a^2+2a+3\right)\left(a^2-2a-3\right)\)
\(=\left[a^2+\left(2a+3\right)\right]\left[a^2-\left(2a+3\right)\right]\)
\(=\left(a^2\right)^2-\left(2a+3\right)^2\)
\(=a^4-\left(2a+3\right)^2\)
b: \(\left(-a^2-2a+3\right)^2\)
\(=\left(a^2+2a-3\right)^2\)
\(=a^4+4a^2+9+4a^3-18a-6a^2\)
\(=a^4+4a^3-2a^2-18a+9\)
c: \(\left(x-y-z\right)^2\)
\(=x^2-2x\left(y+z\right)+\left(y+z\right)^2\)
\(=x^2-2xy-2xz+y^2+2yz+z^2\)
d: \(\left(x+y+z\right)\left(x-y-z\right)\)
\(=x^2-\left(y+z\right)^2\)
\(=x^2-y^2-2yz-z^2\)
\(\left(x+y+z\right)^2\)
\(=\left(x+y+z\right)\left(x+y+z\right)\)
\(=x^2+y^2+z^2+2xy+2yz+2xz\)
\(=x^2+y^2+z^2+2\left(xy+yz+xz\right)\)
Bài 1:
a) -16 +(x-3)2
<=> (x-3)2-16
<=> (x-3)2 -42
<=> (x-3-4)(x-3+4)
<=> (x-7)(x+1)
b) 64+16y+y2
<=> y2 + 2.8.y + 82
<=> (y+8)2
c) \(\dfrac{1}{8}-8x^3\)
\(\Leftrightarrow\left(\dfrac{1}{2}\right)^3-\left(2x\right)^3\)
\(\Leftrightarrow\left(\dfrac{1}{2}-2x\right)\left(\dfrac{1}{4}+x+4x^2\right)\)
d)\(x^2-x+\dfrac{1}{4}\)
\(\Leftrightarrow x^2-2.\dfrac{1}{2}.x+\left(\dfrac{1}{2}\right)^2\)
\(\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2\)
e) x4 + 4x2 + 4
<=> (x2)2 + 2.2.x2 +22
<=> (x2 + 2)2
g)\(8x^3+60x^2y+150xy^2+125y^3\)
\(\Leftrightarrow\left(2x+5y\right)^3\)
a) Ta có:
(x+y+z)(x-y-z) = x^2 -xy -xz +yx- y^2 -yz+zx -zy -z^2
=x^2 - y^2 - 2yz - z^2.
b) Ta có: (x-y+z)(x+y+z) = x^2 +xy+xz -yx-y^2 -yz +zx+zy +z^2
=x^2 +2xz- y^2 +z^2.
c) Ta có: -16 + (x-3)^2 = -16 + ( x^2-6x+9)
= -16 + x^2 - 6x + 9
= x^2 - 6x - 7.
\(a,\left(x+y+z\right)\left(x-y-z\right)\)
\(=x\left(x-y-z\right)+y\left(x-y-z\right)+z\left(x-y-z\right)\)
\(=x^2-xy-xz+xy-y^2-yz+xz-yz-z^2\)
\(=x^2-y^2-2yz-z^2\)
\(b,\left(x-y+z\right)\left(x+y+z\right)\)
\(=x\left(x+y+z\right)-y\left(x+y+z\right)+z\left(x+y+z\right)\)
\(=x^2+xy+xz-xy-y^2-yz+xz+yz+z^2\)
\(=x^2+2xz-y^2+z^2\)
\(c,-16+\left(x-3\right)^2\)
\(=-16+x^2-6x+9\)
\(=x^2-6x-7\)