Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 : Viết các đa thức sau dưới dạng lập phương của một tổng hoặc lập phương của một hiệu
a,8x3+12x2y+6xy2+y38x3+12x2y+6xy2+y3
= (2x)3 + 3.(2x)2.y + 3.2x.y2 + y3
= ( 2x + y )3
b,x3+3x2+3x+1x3+3x2+3x+1
= x3 + 3.x2.1 + 3.x.12 + 13
=(x + 1)3
c, x3−3x2+2x−1x3−3x2+2x−1
= x3 - 3.x2.1+ 3.x.12 - 13
= (x - 1)3
d,27+27y2+9y4+y6
= 33 + 3.32.y2 + 3.3.y4 + (y2)3
= ( 3 + y2 ) 3
cho hỏi lập phương của 1 tổng hay 1 hiệu hay tổng hiệu 2 lập phương vậy
bn viết đề vậy mk cx bí thui haizzzzzz
\(a,x^3+8=\left(x+2\right)\left(x^2-2x+4\right)\)
\(b,27-8y^3=\left(3-2y\right)\left(9+6y+4y^2\right)\)
\(c,y^6+1=\left(y^2\right)^3+1=\left(y^2+1\right)\left(y^4-y^2+1\right)\)
\(d,64x^3-\dfrac{1}{8}y^3=\left(4x-\dfrac{1}{2}y\right)\left(16x^2+2xy+\dfrac{1}{4}y^2\right)\)
\(e,125x^6-27y^9=\left(5x^2\right)^3-\left(3y^3\right)^3=\left(5x^2-3y^3\right)\left(25x^4+15x^2y^3+9y^9\right)\)
\(g,16x^2\left(4x-y\right)-8y^2\left(x+y\right)+xy\left(16+8y\right)\)
\(=8\left[2x^2\left(4x-y\right)-y^2\left(x+y\right)\right]+8xy\left(2+y\right)\)
\(=8\left(8x^3-2x^2y-xy^2-y^3+2xy+xy^2\right)\)
\(f,-\dfrac{x^6}{125}-\dfrac{y^3}{64}=-\left[\left(\dfrac{x^2}{5}\right)^3+\dfrac{y^3}{4^3}\right]=-\left(\dfrac{x^2}{5}+\dfrac{y}{4}\right)\left(\dfrac{x^4}{25}-\dfrac{x^2y}{20}+\dfrac{y^2}{16}\right)\)
Bài 2: \(a,\frac{7x-1}{2x^2+6x}=\frac{7x-1}{2x\left(x+3\right)}=\frac{\left(7x-1\right)\left(x-3\right)}{2x\left(x+3\right)\left(x-3\right)}\)
\(\frac{5-3x}{x^2-9}=\frac{5-3x}{\left(x-3\right)\left(x+3\right)}=\frac{\left(5-3x\right)2x}{2x\left(x-3\right)\left(x+3\right)}\)
\(b,\frac{x+1}{x-x^2}=\frac{x+1}{x\left(1-x\right)}=-\frac{x+1}{x\left(x+1\right)}=-\frac{2\left(x-1\right)\left(x+1\right)}{2x\left(x-1\right)^2}\)
\(\frac{x+2}{2-4x+2x^2}=\frac{x+2}{2\left(x-1\right)^2}=\frac{2x\left(x+2\right)}{2x\left(x-1\right)^2}\)
\(c,\frac{4x^2-3x+5}{x^3-1}=\frac{4x^2-3x+5}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(\frac{2x}{x^2+x+1}=\frac{2x\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(\frac{6}{x-1}=\frac{6\left(x^2+x+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(d,\frac{7}{5x}=\frac{7.2\left(2y-x\right)\left(2y+x\right)}{2.5x\left(2y-x\right)\left(2y+x\right)}\)
\(\frac{4}{x-2y}=-\frac{4}{2y-x}=-\frac{4.2.5x\left(2x+x\right)}{2.5x\left(2y-x\right)\left(2y+x\right)}\)
\(\frac{x-y}{8y^2-2x^2}=\frac{x-y}{2\left(4y^2-x^2\right)}=\frac{x-y}{2\left(2y-x\right)\left(2y+x\right)}=\frac{5x\left(x-y\right)}{2.5x.\left(2y-x\right)\left(2y+x\right)}\)
Ta có ; x2 - 11x + 24
= x2 - 3x - 8x + 24
= x(x - 3) - (8x - 24)
= x(x - 3) - 8(x - 3)
= (x - 3)(x - 8)
\(a,\frac{x+1}{x-2}+\frac{x-1}{x+2}=\frac{2\left(x^2+2\right)}{x^2-4}\)\(\Leftrightarrow\frac{x^2+3x+2+x^2-3x+2}{x^2-4}=\frac{2\left(x^2+2\right)}{x^2-4}\)
\(\Leftrightarrow2\left(x^2+2\right)=2\left(x^2+2\right)\)(luôn đúng)
Vậy pt có vô số nghiệm
\(b,\Leftrightarrow\left(2x+3\right)\left(\frac{3x+8}{2-7x}+1\right)=\left(x-5\right)\left(\frac{3x+8}{2-7x}+1\right)\)
\(\Leftrightarrow\left(\frac{3x+8}{2-7x}+1\right)\left(2x+3-x+5\right)=0\)\(\Leftrightarrow\left(\frac{-4x+10}{2-7x}\right)\left(x+8\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}-4x+10=0\\x+8=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=\frac{5}{2}\\x=-8\end{cases}}\)
Mấy câu rút gọn bạn quy đồng nha
Làm ngắn gọn thôi nhé :v
\(A=\frac{2x}{x^2-3x}+\frac{2x}{x^2-4x+3}+\frac{x}{x-1}\)
\(A=\frac{x^5-3x^4-3x^3+11x^2-6x}{x^5-8x^2+22x^2-24x+9}\)
\(A=\frac{x^4-3x^3-3x^2+11x-6}{x^4-8x^3+22x^2-24x+9}\)
\(A=\frac{\left(x-1\right)\left(x-1\right)\left(x+2\right)\left(x-3\right)}{\left(x-1\right)\left(x-1\right)\left(x-3\right)\left(x-3\right)}\)
\(A=\frac{x+2}{x-3}\)
\(B=\frac{x}{x+2}+\frac{2}{x-2}-\frac{4x}{4-x^2}\)
\(B=\frac{-x^4-4x^3+16x+16}{-x^4+8x^2-16}\)
\(B=\frac{\left(-x-2\right)\left(x+2\right)\left(x+2\right)\left(x-2\right)}{\left(-x-2\right)\left(x-2\right)\left(x+2\right)\left(x-2\right)}\)
\(B=\frac{x+2}{x-2}\)
\(C=\frac{1+x}{3-x}-\frac{1-2x}{3+x}-\frac{x\left(1-x\right)}{9-x^2}\)
\(C=\frac{1+x}{3-x}-\left(\frac{1-2x}{3+x}\right)-\frac{x\left(1-x\right)}{9-x^2}\)
\(C=\frac{10x}{-x^2+9}\)
\(D=\frac{5}{2x^2+6x}-\frac{4-3x^2}{x^2-9}-3\)
\(D=\frac{5}{2x^2+6x}-\left(\frac{4-3x^2}{x^2-9}\right)-3\)
\(D=\frac{51x^2+138x-45}{2x^4+6x^2-18x^2-54x}\)
\(D=\frac{3\left(17x-5\right)\left(x+3\right)}{2x\left(x+3\right)\left(x+3\right)\left(x-2\right)}\)
\(D=\frac{51x-15}{2x^3-18x}\)
\(E=\frac{3x+2}{x^2-2x+1}-\frac{6}{x^2-1}-\frac{3x-2}{x^2+2x+1}\)
\(E=\frac{3x+2}{x^2-2x+1}-\frac{6}{x^2-1}-\left(\frac{3x-2}{x^2+2x+1}\right)\)
\(E=\frac{10x^4-10}{x^6-3x^4+3x^2-1}\)
\(E=\frac{10\left(x^2+1\right)\left(x+1\right)\left(x-1\right)}{\left(x+1\right)\left(x+1\right)\left(x+1\right)\left(x-1\right)\left(x-1\right)\left(x-1\right)}\)
\(E=\frac{10x^2+10}{x^4-2x+1}\)
1.\(x^{16}-y^{16}=\left(x^8-y^8\right)\left(x^8+y^8\right)\)
2.\(x^3-125=x^3-5^3=\left(x-5\right)\left(x^2+5x+25\right)\)
\(-64+\frac{1}{8}x^3=\left(\frac{x}{2}\right)^3-4^3=\left(\frac{x}{2}-4\right)\left(\frac{x^2}{4}+2x+16\right)\)
\(8x^3+60x^2y+150xy^2+125y^3=\left(2x\right)^3+3.\left(2x\right)^2.\left(5y\right)+3.\left(2x\right).\left(5y\right)^2+\left(5y\right)^3\)
\(=\left(2x+5y\right)^3\)
b) \(-4x^2-4x-1\)
\(=-\left(4x^2+4x+1\right)\)
\(=-\left(2x+1\right)^2\)
c) \(\frac{4}{9}x^2-25y^2\)
\(=\left(\frac{2}{3}x+5y\right)\left(\frac{2}{3}x-5y\right)\)
d) \(\frac{1}{27}x^3-8\)
\(=\left(\frac{1}{3}x-2\right)\left(\frac{1}{9}x+\frac{2}{3}x+4\right)\)