Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Chọn hệ quy chiếu Oxy như hình vẽ, chiều dương là chiều chuyển động. Vật chịu tác dụng của các lực f m s → ; N → ; P →
Theo định luật II newton ta có: f → m s + N → + P → = m a → 1
Chiếu Ox ta có :
P x − f m s = m a 1 ⇒ P sin α − μ N = m a 1
Chiếu Oy ta có: N = P y = P cos α
⇒ a 1 = g sin α − μ g cos α
⇒ a 1 = 10. 1 2 − 0 , 1.10. 3 2 = 4 , 134 m / s 2
Vận tốc của vật ở chân dốc.
Áp dụng công thức v 1 2 − v 0 2 = 2 a 1 s
⇒ v 1 = 2 a 1 s = 2.4 , 134.40 ≈ 18 , 6 m / s
b. Chọn hệ quy chiếu Oxy như hình vẽ , chiều dương (+) Ox là chiều chuyển động .Áp dụng định luật II Newton
Ta có F → m s + N → + P → = m a → 2
Chiếu lên trục Ox: − F m s = m a 2 ⇒ − μ . N = m a 2 1
Chiếu lên trục Oy: N – P = 0 ⇒ N = P=mg
⇒ a 2 = − μ g = − 0 , 2.10 = − 2 m / s 2
Để vật dừng lại thì v 2 = 0 m / s
Áp dụng công thức:
v 2 2 − v 1 2 = 2 a 2 . s 2 ⇒ s 2 = − 18 , 6 2 2. − 2 = 86 , 5 m
A B C 30 0
Chọn mốc thế năng tại chân mặt phẳng nghiêng.
a) Cơ năng tại đỉnh mặt phẳng nghiêng
\(W=mgh=mg.AB\sin 30^0=1,2.10.AB.\sin 30^0=24\)
\(\Rightarrow AB = 4(m)\)
b) Tại D động năng bằng 3 lần thế năng, ta có: \(W_đ=3W_t\Rightarrow W = 4W_t \Rightarrow W_t = 24: 4 = 6(J)\)
\(\Rightarrow mgh_1=mg.DB\sin 30^0=1,2.10.DB.\sin 30^0=6\)
\(\Rightarrow DB = 1(m)\)
c) Tại trung điểm mặt phẳng nghiêng
Thế năng: \(W_t = mgh_2=mg.\dfrac{AB}{2}\sin 30^0=1,2.10.2.\sin 30^0=12(J)\)
Động năng: \(W_đ=W-W_t=24-12=12(J)\)
\(\Rightarrow \dfrac{1}{2}.1,2.v^2=12\)
\(\Rightarrow 2\sqrt 5(m/s)\)
d) Công của lực ma sát trên mặt ngang: \(A_{ms}=\mu mg.S\)
Theo định lí động năng: \(W_{đ2}-W_{đ1}=-A_{ms}\Rightarrow 0-24=-\mu.1,2.10.1\Rightarrow \mu = 2\)
anh ơi , anh quên tính vận tốc của vật tại chân mặt phẳng nghiêng kìa . Đãng trí quá .
200g=0,2kg
các lực tác dụng lên vật khi ở trên mặt phẳng nghiêng
\(\overrightarrow{P}+\overrightarrow{N}=m.\overrightarrow{a}\)
chiếu lên trục Ox có phương song song với mặt phẳng nghiêng, chiều dương cùng chiều chuyển động
P.sin\(\alpha\)=m.a\(\Rightarrow\)a=5m/s2
vận tốc vật khi xuống tới chân dốc
v2-v02=2as\(\Rightarrow\)v=\(4\sqrt{5}\)m/s
khi xuống chân dốc trượt trên mặt phẳng ngang xuất hiện ma sát
các lực tác dụng lên vật lúc này
\(\overrightarrow{P}+\overrightarrow{N}+\overrightarrow{F_{ms}}=m.\overrightarrow{a'}\)
chiếu lên trục Ox có phương nằm ngang chiều dương cùng chiều chuyển động của vật
-Fms=m.a'\(\Rightarrow-\mu.N=m.a'\) (1)
chiếu lên trục Oy có phương thẳng đứng chiều dương hướng lên trên
N=P=m.g (2)
từ (1),(2)\(\Rightarrow\)a'=-2m/s2
thời gian vật chuyển động trên mặt phẳng đến khi dừng lại là (v1=0)
t=\(\dfrac{v_1-v}{a'}\)=\(2\sqrt{5}s\)
Cơ năng ban đầu: \(W_1=mgh=mg.S.\sin30^0\)
Cơ năng ở chân mặt phẳng nghiêng: \(W_2=\dfrac{1}{2}mv^2\)
Bảo toàn cơ năng: \(W_1=W_2\)
\(\Rightarrow v=\sqrt{2gS.\sin 30^0}=\sqrt{2.10.10.\sin 30^0}=10(m/s)\)
Chọn đáp án D
Chọn hệ quy chiếu Oxy như hình vẽ , chiều dương (+) Ox là chiều chuyển động
Áp dụng định luật II Newton
Ta có
Chiếu lên trục Ox (1)
Chiếu lên trục Oy: N-P=0 suy ra N=P=mg
Áp dụng công thức
a) Khi vật ở trên mặt phẳng nghiêng, ta xét hệ trục tọa độ Oxy sao cho Ox song song với mặt phẳng nghiêng còn Oy trùng với phương của phản lực \(\overrightarrow{N}\). Chọn chiều (+) là chiều chuyển động của vật. Gọi \(m\left(kg\right)\) là khối lượng của vật. Khi đó \(P=10m\left(N\right)\). Hơn nữa, dễ thấy góc nghiêng so với phương ngang của mặt phẳng nghiêng là \(30^o\). Ta chiếu \(\overrightarrow{P}\) lên 2 trục Ox, Oy thành 2 lực \(\overrightarrow{P_x},\overrightarrow{P_y}\). Khi đó:
\(P_y=P.\cos30^o=5m\sqrt{3}\left(N\right)\) và \(P_x=P.\sin30^o=5m\left(N\right)\).
Áp dụng định luật II Newton: \(\overrightarrow{P}+\overrightarrow{N}=m.\overrightarrow{a}\) (*)
Chiếu (*) lên Ox, ta được \(P_x=m.a\) \(\Rightarrow5m=m.a\) \(\Rightarrow a=5\left(m/s^2\right)\)
b) Khi vật di chuyển trên mặt phẳng ngang, ta xét trên hệ trục tọa độ Oxy với Ox song song với mặt phẳng ngang còn Oy trùng với phương của phản lực \(\overrightarrow{N'}\). Vật mất \(t=\dfrac{v}{a}=\dfrac{10}{5}=2\left(s\right)\) để đi đến chân mặt phẳng nghiêng.
Gọi \(v\) là vận tốc khi vật tới chân mặt phẳng nghiêng. Ta có \(v=\sqrt{2as}=\sqrt{2.5.10}=10m/s\).
Áp dụng định luật II Newton: \(\overrightarrow{P}+\overrightarrow{N'}+\overrightarrow{F_{ms}}=m\overrightarrow{a'}\) (**)
Chiếu (**) lên Oy, ta được \(N'=P=10m\left(N\right)\)
\(\Rightarrow F_{ms}=\mu.N'=0,1.10m=m\left(N\right)\)
Chiếu (**) lên Ox, ta được \(-F_{ms}=m.a'\Rightarrow a'=\dfrac{-F_{ms}}{m}=\dfrac{-10m}{m}=-10\left(m/s^2\right)\)
Do đó, gọi \(s,t\) lần lượt là quãng đường vả thời gian vật đi được từ khi đến chân mặt phẳng nghiêng đến khi dừng lại.
Khi đó \(t=\dfrac{-v}{a'}=\dfrac{-10}{-10}=1\left(s\right)\) và \(s=vt+\dfrac{1}{2}a't^2=10.1+\dfrac{1}{2}.\left(-10\right).1^2=5\left(m\right)\)
Như vậy, tổng quãng đường, thời gian vật đi được cho tới khi dừng lại là:
\(S=10+5=15\left(m\right)\)
\(T=2+1=3\left(s\right)\)
Chọn hệ quy chiếu Oxy như hình vẽ, chiều dương là chiều chuyển động.
Vật chịu tác dụng của các lực →N;→P�→;�→
Theo định luật II newton ta có: →N+→P=m→a1�→+�→=��→1
Chiếu Ox ta có : Px=ma1��=��1⇒Psinα=ma1⇒�sin�=��1
⇒a1=gsinα=10.510=5(m/s2)⇒�1=�sin�=10.510=5�/�2
Vận tốc của vật ở chân dốc.
Áp dụng công thức v21−v20=2a1s�12−�02=2�1�
⇒v1=√2a1s=√2.5.10=10(m/s)⇒�1=2�1�=2.5.10=10�/�
Khi chuyển động trên mặt phẳng ngang: Chọn hệ quy chiếu Oxy như hình vẽ , chiều dương (+) Ox là chiều chuyển động .Áp dụng định luật II Newton
Ta có →Fms+→N+→P=m→a2�→��+�→+�→=��→2
Chiếu lên trục Ox: −Fms=ma2⇒−μ.N=ma2(1)−���=��2⇒−�.�=��21
Chiếu lên trục Oy: N – P = 0⇒⇒N = P=mg
⇒a2=−μg=−0,1.10=−1(m/s2)⇒�2=−��=−0,1.10=−1�/�2
Để vật dừng lại thì v2=0(m/s)�2=0�/�
Áp dụng công thức:
v22−v21=2a2.s2⇒s2=−1022.(−1)=50(m)�22−�12=2�2.�2⇒�2=−1022.−1=50�
Và v2=v1+a2t⇒t=−10−1=10(s)
Ta có: \(A=A_{\left(\overrightarrow{Fms}\right)}+A_{\left(\overrightarrow{N}\right)}=F_{ms}s\cos\beta+0\) ( Bổ sung: \(\sin\alpha=\dfrac{h}{S}\Rightarrow S=40\left(m\right)\) )
\(\Rightarrow A=\mu mg\cos\alpha.40.\cos\left(180^0\right)=\dfrac{\sqrt{3}}{10}5.10.\dfrac{\sqrt{3}}{2}.40.\left(-1\right)=-300\left(J\right)\)
Chọn mốc thế năng tại vị trí chân mặt phẳng nghiêng:
Cơ năng của vật lúc bắt đầu trượt: \(W_1=W_{đ1}+W_{t1}=\dfrac{1}{2}mv_1^2+mgz_1\)
Cơ năng của vật tại chân mặt phẳng nghiêng: \(W_2=\dfrac{1}{2}mv_2^2+mgz_2\)
Do vật chịu thêm tác dụng của lực ma sát nên cơ năng của vật sẽ không được bảo toàn. Nên công của các lực cản bằng độ biến thiên cơ năng của vật
\(A_{\left(\overrightarrow{Fc}\right)}=\Delta W=W_2-W_1\)
\(\Rightarrow-300=\left(\dfrac{1}{2}mv_2^2+mgz_2\right)-\left(\dfrac{1}{2}mv_1^2+mgz_1\right)\)
\(\Rightarrow-300=\dfrac{1}{2}mv_2^2-mgz_1\Rightarrow v_2=2\sqrt{170}\left(m/s\right)\)
b) với ma sát không đổi \(\mu=\dfrac{\sqrt{3}}{10}\) ta dễ chứng minh được công thức: \(a=-\mu g=\dfrac{-\sqrt{3}}{10}.10=-\sqrt{3}\)
Ta có hệ thức liên hệ:\(v^2-v_2^2=2aS\Rightarrow S=\dfrac{-v_2^2}{2a}=\dfrac{-\left(2\sqrt{170}\right)^2}{-2\sqrt{3}}=\dfrac{680\sqrt{3}}{6}\left(m\right)\)
Done :D