Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mk làm bài 1 nha:
Tìm x: \(\left(2x-4\right)\left(x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2x-4=0\\x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=2\\x=1\end{cases}}}\)
Vậy...
chúc bn học tốt
1.
a) (2x-4).(x-1)=0
* 2x-4=0 * x-1=0
2x=0+4 x=0+1
2x=4 x=1
x=4:2
x=2
vậy x=2 hoặc x=1
a) P = (4n-5)/(2n-1) = (4n-2 - 3)/(2n-1) = 2 - 3/(2n-1)
P thuộc Z khi và chỉ khi 3/(2n-1) thuộc Z <=> 2n-1 là ước của 3
* 2n - 1 = -1 <=> n = 0
* 2n - 1 = -3 <=> n = -1 (loại, vì n tự nhiên)
* 2n - 1 = 1 <=> n = 1
* 2n - 1 = 3 <=> n = 2
Vậy có 3 giá trị của n tự nhiên là: 0, 1, 2
*kí hiệu thuộc vs ước bạn tự viết nha*
b) mk lười làm nên bạn tham khảo ở link này nha ^^: https://olm.vn/hoi-dap/question/12009.html
a, ( 4n - 5 ) chia het cho ( 2n - 1 )
=> ( n + n + n + n - 1 - 1 - 1-1 -1) chia het cho ( 2n - 1 )
=>. ( 2n + 2n - 1 - 1 - 3 ) chia het cho ( 2n -1 )
=> [ ( 2n - 1 ) + ( 2n - 1 ) - 3 ] chia het cho (2n-1)
Vi ( 2n-1) chia het cho ( 2n - 1 )
=> 3 chia het cho ( 2n - 1 )
=> 2n - 1 thuoc U(3)
=> 2n - 1 thuoc { 1; 3}
=> 2n thuoc { 0 ; 2 }
=> n thuoc { 0 ; 1 }
Vay n thuoc { 0; 2 }
Phan b, ban lm tuong tu nha !
Tham khao nha !
Ta co
(n-3) CHC (n+1)
-> n+1CHC n+1
->(n-3)-(n+1) CHC (n+1)
-> -4 CHC (n+1)
->n+1={1;-1;2;-2;4;-4}
->n={0;-2;1;-3;3;-5}
a) sai đề
b)2n-5 chia hết cho n+1=>(2n+2)-(5-2)=> 3 : n+1 => n+1={1;3}=>n={0;2}
a) 2n - 4 ⋮ n - 3
2n - 6 + 2 ⋮ n - 3
2( n - 3 ) + 2 ⋮ n - 3
Vì 2( n - 3 ) ⋮ n - 3
=> 2 ⋮ n - 3
=> n - 3 thuộc Ư(2) = { 1; -1; 2; -2 }
=> n thuộc { 4; 2; 5; 1 }
Vậy,......
- Các câu còn lại tương tự
\(a,2n-4⋮n-3\Leftrightarrow2n-6+2⋮n-3\)
\(\Leftrightarrow2\left(n-3\right)+2⋮n-3\Leftrightarrow2⋮n-3\left(n-3\inℤ\right)\)
\(\Leftrightarrow n-3\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)\(\Leftrightarrow n\in\left\{2;4;1;5\right\}\)
Vậy \(n=1;2;4;5\)
1) Coi a< b
ƯCLN (a;b) = 56 . Đặt a = 56m; b = 56n (m; n nguyên tố cùng nhau và m < n)
a + b = 224 => 56m + 56n = 224 => m + n = 4 => m = 1; n =3 => a = 56 và b = 168
Vậy...
2) Gọi d = ƯCLN(2n + 2; 2n+ 3)
=> 2n + 1 chia hết cho d; 2n +3 chia hết cho d
=> 2n + 3 - (2n + 1) chia hết cho d => 2 chia hết cho d => d = 1 hoặc d = 2
Mà 2n + 1 lẻ nên 2n + 1 không chia hết cho 2 => d = 1
Vậy...
3) Áp dụng công thức ƯCLN(a;b) . BCNN(a;b) = a.b => ƯCLN(a;b) = 2400 : 120 = 20
Đặt a = 20m; b= 20n( m; n nguyên tố cùng nhau; coi m< n)
a.b = 20m.20n = 400mn = 2400 => m.n = 6 = 1.6 = 2.3
+) m = 1; n = 6 => a = 20; b = 120
+) m = 2; n = 3 => a = 40; b = 60
Vây,...
4) a chia hết cho b nên BCNN(a;b) = a = 18
=> b \(\in\)Ư(18) = {1;2;3;6;9;18}
vậy,,,