K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 1 2021

A, B, M thẳng hàng khi \(\overrightarrow{AM}=k\overrightarrow{AB}\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-3=k\\2=k.7\end{matrix}\right.\Rightarrow x=\dfrac{23}{7}\Rightarrow M\left(\dfrac{23}{7};0\right)\Rightarrow D\)

NV
15 tháng 4 2019

Do \(M\in d\Rightarrow M\left(3m;4-4m\right)\)

Gọi \(N\left(x;y\right)\) \(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AN}=\left(x-1;y-1\right)\\\overrightarrow{AM}=\left(3m-1;3-4m\right)\end{matrix}\right.\)

Do A, M, N thẳng hàng nên ta có: \(\frac{x-1}{3m-1}=\frac{y-1}{3-4m}\)

\(\Leftrightarrow\left(x-1\right)\left(3-4m\right)=\left(y-1\right)\left(3m-1\right)\)

\(\Leftrightarrow3\left(x-1\right)-4m\left(x-1\right)=3m\left(y-1\right)-\left(y-1\right)\)

\(\Leftrightarrow m=\frac{3x+y-4}{4x+3y-7}\) (1)

Mặt khác \(\overrightarrow{AM}.\overrightarrow{AN}=4\Leftrightarrow\left(x-1\right)\left(3m-1\right)+\left(y-1\right)\left(3-4m\right)=4\)

\(\Leftrightarrow m=\frac{x-3y+6}{3x-4y+1}\) (2)

Từ (1), (2) ta có: \(\frac{3x+y-4}{4x+3y-7}=\frac{x-3y+6}{3x-4y+1}\)

\(\Leftrightarrow\left(3x+y-4\right)\left(3x-4y+1\right)-\left(x-3y+6\right)\left(4x+3y-7\right)=0\)

\(\Leftrightarrow5x^2+5y^2-26x-54y+38=0\)

\(\Leftrightarrow x^2+y^2-\frac{26}{5}x-\frac{54}{5}y+\frac{38}{5}=0\)

N nằm trên đường tròn tâm \(I\left(\frac{13}{5};\frac{27}{5}\right)\) bán kính \(R=\frac{2\sqrt{177}}{5}\)

Cách tính cơ bản là vậy, nhưng số hơi xấu nên có thể tính nhầm đoạn nào đó

NV
8 tháng 5 2021

\(d\left(M;\Delta\right)=\dfrac{\left|3.1-4.\left(-2\right)+4\right|}{\sqrt{3^2+\left(-4\right)^2}}=\dfrac{15}{5}=3\)

14 tháng 10 2018

A và B là hai điểm nào vậy bạn

19 tháng 10 2018

minh lam duoc roi

19 tháng 5 2016

Gọi tâm I thuộc d : 3x-y-3=0 nên \(I\left(a;3a-2\right)\)Vì (C) đi qua A và B nên ta có IA=IB

\(\overrightarrow{IA}=\left(3-a;3-3a\right)\Rightarrow IA^2=\left(3-a\right)^2+\left(3-3a\right)^2\)

\(\overrightarrow{IB}=\left(-1-a;5-3a\right)\Rightarrow IB^2=\left(1+a\right)^2+\left(5-3a\right)^2\) 

Có IA=IB nên \(\left(3-a\right)^2+\left(3-3a\right)^2=\left(1+a\right)^2+\left(5-3a\right)^2\Leftrightarrow-8+4a=0\Leftrightarrow a=2\) Vậy I(2;4) \(R=IA=\sqrt{10}\)

Vậy ptdt (C) là : \(\left(x-2\right)^2+\left(y-4\right)^2=10\)

14 tháng 12 2016

2, a,

\(f\left(-2\right)=5-2\times\left(-2\right)=9\)

\(f\left(-1\right)=5-2\times\left(-1\right)=7\)

\(f\left(0\right)=5-2\times0=5\)

\(f\left(3\right)=5-2\times3=-1\)

b, \(y=5\Leftrightarrow5-2x=5\Leftrightarrow x=0\)

\(y=3\Leftrightarrow5-2x=3\Leftrightarrow x=1\)

\(y=-1\Leftrightarrow5-2x=-1\Leftrightarrow x=3\)

14 tháng 12 2016

toan lop7 nha may ban

NV
25 tháng 7 2020

Bận ăn cơm :(

Bạn nhầm vị trí điểm I với điểm K à?

Vậy mình nêu hướng giải thôi nhé, làm biếng quá

Dễ dàng chứng minh \(\Delta_vADK=\Delta_vBAI\Rightarrow\widehat{DAK}=\widehat{IBA}\)

\(\widehat{DAK}+\widehat{KAB}=90^0\Rightarrow\widehat{IBA}+\widehat{KAB}=90^0\Rightarrow AK\perp BI\)

Gọi E là trung điểm AB \(\Rightarrow CE//AK\) (hbh)

Gọi G là giao điểm BI và CE thì EG là đtb tam giác ABM (qua trung điểm E và song song cạnh đáy)

\(\Rightarrow\) G là trung điểm BM \(\Rightarrow CG\) là đường cao đồng thời là trung tuyến trong tam giác BCM

\(\Rightarrow\Delta BCM\) cân tại C \(\Rightarrow BC=CM=\sqrt{10}\)

\(AB=BC=\sqrt{10};AI=\frac{1}{2}AD=\frac{\sqrt{10}}{2}\)

\(\Rightarrow BI=\sqrt{AB^2+AI^2}=\frac{5\sqrt{2}}{2}\Rightarrow MB=\frac{AB^2}{BI}=2\sqrt{2}\)

\(\Rightarrow cos\widehat{MCB}=\frac{2BC^2-BM^2}{2BC^2}=\frac{3}{5}\)

\(\Rightarrow\) Viết được pt BC (qua C và tạo với đường thẳng CM đã biết 1 góc có \(cos=\frac{3}{5}\))

Tọa độ B là giao của BC và đường tròn tâm C bán kính BC có pt \(\left(x-2\right)^2+\left(y+2\right)^2=10\)

NV
25 tháng 7 2020

Nhân tiện hướng giải bài kia:

Gọi M là trung điểm AD, G là trọng tâm tam giác ABC

Do ABC cân tại A nên G và K cùng thuộc trung tuyến ứng với BC \(\Rightarrow GK\perp BC\)

E là trọng tâm ABD \(\Rightarrow\) DE đi qua trung điểm AB \(\Rightarrow\) DE là đường trung bình tam giác ABC (đi qua trung điểm của AB và AC)

\(\Rightarrow DE//BC\Rightarrow GK\perp DE\) (*)

K là tâm đường tròn ngoại tiếp, D là trung điểm AC \(\Rightarrow KD\perp AC\) (1)

G là trọng tâm ABC, E là trọng tâm ABD

\(\Rightarrow\left\{{}\begin{matrix}BG=\frac{2}{3}BD\\BE=\frac{2}{3}BM\end{matrix}\right.\) \(\Rightarrow EG//MD\) (Talet đảo) (2)

(1);(2) \(\Rightarrow KD\perp EG\) (**)

(*);(**) \(\Rightarrow\) G là trực tâm EDK \(\Rightarrow DG\perp EK\) hay \(BD\perp EK\)

\(\Rightarrow\) Viết được pt BD (qua Q và vuông góc EK)

Do D thuộc BD, gọi tọa độ D theo 1 ẩn

P thuộc AC \(\Rightarrow PD\perp KD\Rightarrow\overrightarrow{PD}.\overrightarrow{KD}=0\Rightarrow\) tìm được tọa độ D

Viết được pt AC (qua P và vuông góc BD)

Viết pt EG (qua E và song song AC) \(\Rightarrow\) tọa độ G là giao điểm EG và BD

\(\Rightarrow\) Phương trình GK \(\Rightarrow\) tọa đô A là giao GK và AC

\(\Rightarrow\)Tọa độ C (D là trung điểm AC)

1/Trong mặt phẳng tọa độ Oxy, cho hình chữ nhật ABCD. Đỉnh B thuộc đường thẳng d1: 2x-y+2=0, đỉnh C thuộc đường thẳng d2: x-y-5=0. Gọi H là hình chiếu của B xuống AC, biết M(\(\dfrac{9}{5}\);\(\dfrac{2}{5}\)), K(9;2) lần lượt là trung điểm của AH và CD Tìm tọa độ các đỉnh hình chữ nhật ABCD, biết điểm C có hoành độ lờn hơn 4 2/Trong mặt phẳng tọa độ Oxy, cho tam giác ABC, biết...
Đọc tiếp

1/Trong mặt phẳng tọa độ Oxy, cho hình chữ nhật ABCD. Đỉnh B thuộc đường thẳng d1: 2x-y+2=0, đỉnh C thuộc đường thẳng d2: x-y-5=0. Gọi H là hình chiếu của B xuống AC, biết M(\(\dfrac{9}{5}\);\(\dfrac{2}{5}\)), K(9;2) lần lượt là trung điểm của AH và CD Tìm tọa độ các đỉnh hình chữ nhật ABCD, biết điểm C có hoành độ lờn hơn 4

2/Trong mặt phẳng tọa độ Oxy, cho tam giác ABC, biết B(\(\dfrac{1}{2}\);1). Đường tròn nội tiếp tam giác ABC tieepa xúc với BC, CA, AB lần lượt tại D,E,F. Biết điểm D(3;1). đường thẳng È:y-3=0. Tìm tọa độ điểm A biết A có tung độ dương

3/ Trong mặt phẳng tọa độ Oxy, choa tam giác ABC cân tại A , D là trung điểm AB . Biết rằng I(\(\dfrac{11}{3}\);\(\dfrac{5}{3}\)); E(\(\dfrac{13}{3}\);\(\dfrac{5}{3}\)) lần lượt là tâm đường tròn ngoại tiếp tam giác ABC , trọng tâm tam giác ADC, các diểm M(3;-1);N(-3;0) lần lượt thuộc các đường thẳng DC, AB.Tìm tọa độ các điểm A,B,C, biết A có tung độ dương

4/ Trong mặt phẳng tọa độ Oxy, hãy viết phương trình các cạnh của tam giác ABC biết trực tâm H(1;0) , chân đường cao hạ từ đinh B là K(0;2), trung điểm cạnh AB là M (3;1)

5/ Trong mặt phẳng tọa độ Oxy, cho tam giác ABC vuông tại C có phân giác trong AD với D (\(\dfrac{7}{2}\);-\(\dfrac{7}{2}\)) thuộc BC . Gọi E,F là hai điểm làn lượt thuộc các cạnh AB, AC sao cho AE=AF. Đường thẳng EF cắt BC taị K.Biết E(\(\dfrac{3}{2}\);-\(\dfrac{5}{2}\)), F có hoành độ nhỏ hơn 3 và phương trình đường thẳng AK : x-2y-3=0. Viết phương trình của các cạnh tam giác ABC.

6/ Trong mặt phẳng tọa độ Oxy, cho đường tròn (C): (x-1)2+(y-1)2 + 25 và các điểm A (7;9), B(0;8). Tìm tọa độ điểm M thuộc (c) sao cho biểu thức P= MA+2MB min

7/ Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có góc BAC =120O , đường cao BH: \(\sqrt{3}\)x+y-2=0. Trung điểm của cạnh BC là M( \(\sqrt{3}\);\(\dfrac{1}{2}\)) và trực tâm H(0;2). Tìm tọa độ các đỉnh B,C của tam giác ABC

8/ Trong mặt phẳng tọa độ Oxy, CHO (C1); x2 + y2-6x+8y+23=0, (C2) : x2 + y2+12x-10y+53=0 và (d) : x-y-1=0. Viết phương trình đường trong (C) có tâm thuộc (d), tiếp xúc trong với (C1), và tiếp xúc ngoài với (C2)

0
4 tháng 2 2018

Bài 3:

Ta có: \(a^2+b^2+c^2=3\ge ab+bc+ca\) ( tự cm bđt nha )

Áp dụng bất đẳng thức Schwarz ta có:

\(\dfrac{a^3}{b+c}+\dfrac{b^3}{c+a}+\dfrac{c^3}{a+b}=\dfrac{a^4}{ab+bc}+\dfrac{b^4}{bc+ab}+\dfrac{c^4}{ac+bc}\)

\(\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{2\left(ab+bc+ca\right)}\ge\dfrac{9}{6}=\dfrac{3}{2}\)

\(\Rightarrowđpcm\)

Dấu " = " khi a = b = c = 1

Bài 4:

Ta có: \(\dfrac{a^3}{a^2+b^2}=\dfrac{a\left(a^2+b^2\right)-ab^2}{a^2+b^2}=a-\dfrac{ab^2}{a^2+b^2}\ge a-\dfrac{ab^2}{2ab}=a-\dfrac{b}{2}\)

( BĐT AM - GM )

Tương tự \(\Rightarrow\dfrac{b^3}{c^2+a^2}\ge b-\dfrac{c}{2}\)

\(\dfrac{c^3}{c^2+a^2}\ge c-\dfrac{a}{2}\)

\(\Rightarrow VT\ge\left(a+b+c\right)-\dfrac{1}{2}\left(a+b+c\right)=\dfrac{a+b+c}{2}\)

Dấu " = " khi a = b = c

4 tháng 2 2018

Tiếp sức cho Tú đệ

Bài 1: \(a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)\)

\(\ge\left(a+b\right)\left(2ab-ab\right)=ab\left(a+b\right)\)

\(\Rightarrow\dfrac{a^3+b^3}{ab}\ge\dfrac{ab\left(a+b\right)}{ab}=a+b\)

Tương tự cho 2 BĐT còn lại rồi cộng theo vế:

\(VT\ge VP."="\Leftrightarrow a=b=c\)

Bài 2: Holder:

\(\left(\dfrac{a^4}{bc^2}+\dfrac{b^4}{ca^2}+\dfrac{c^4}{ab^2}\right)\left(\dfrac{bc}{a}+\dfrac{ca}{b}+\dfrac{ab}{c}\right)\left(c+a+b\right)\ge\left(a+b+c\right)^3\)

Cần chứng minh \(\dfrac{bc}{a}+\dfrac{ca}{b}+\dfrac{ab}{c}\ge a+b+c\)

AM-GM: \(\dfrac{bc}{a}+\dfrac{ca}{b}\ge2\sqrt{\dfrac{bc}{a}\cdot\dfrac{ca}{b}}=2c\)

Tương tự rồi cộng theo vế:

\("=" \Leftrightarrow a=b=c\)