Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đường tròn tâm \(I\left(1;-3\right)\) bán kính \(R=5\)
Do tiếp tuyến d vuông góc với d1 nên phương trình d có dạng:
\(4x+3y+c=0\)
d tiếp xúc (C) \(\Leftrightarrow d\left(I;d\right)=R\)
\(\Leftrightarrow\frac{\left|4.1-3.3+c\right|}{\sqrt{4^2+3^2}}=5\Leftrightarrow\left|c-5\right|=25\)
\(\Rightarrow\left[{}\begin{matrix}c=30\\c=-20\end{matrix}\right.\) có 2 tiếp tuyến thỏa mãn: \(\left[{}\begin{matrix}4x+3y+30=0\\4x+3y-20=0\end{matrix}\right.\)
\(d_1\) nhận \(\left(3;4\right)\) là 1 vtpt
\(d_2\) nhận \(\left(a;-2\right)\) là 1 vtcp \(\Rightarrow\) nhận \(\left(2;a\right)\) là 1 vtpt
Do đó ta có:
\(\frac{\left|3.2+4.a\right|}{\sqrt{3^2+4^2}.\sqrt{4+a^2}}=cos45^0=\frac{\sqrt{2}}{2}\)
\(\Leftrightarrow\frac{\left|4a+6\right|}{5\sqrt{a^2+4}}=\frac{\sqrt{2}}{2}\Leftrightarrow\sqrt{2}\left(4a+6\right)=5\sqrt{a^2+4}\)
\(\Leftrightarrow2\left(4a+6\right)^2=25\left(a^2+4\right)\)
\(\Leftrightarrow7a^2+96a-28=0\)
\(\Rightarrow a_1+a_2=-\frac{96}{7}\) (theo Viet)
(3):
a: =>căn 2x-3=x-3
=>x>=3 và x^2-6x+9=2x-3
=>x>=3 và x^2-8x+12=0
=>x=6
b: =>x>=-1 và 2x^2+mx-3=x^2+2x+1
=>x>=-1 và x^2+(m-2)x-4=0
=>với mọi m thì pt luôn có hai nghiệm phân biệt lớn hơn -1 vì a*c<0
Gọi \(A\left(a;1-a\right)\) ; \(B\left(b;2b-1\right)\) \(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{MA}=\left(a-1;2-a\right)\\\overrightarrow{MB}=\left(b-1;2b\right)\end{matrix}\right.\)
\(2\overrightarrow{MA}+\overrightarrow{MB}=0\Leftrightarrow\left(2a-2;4-2a\right)+\left(b-1;2b\right)=\left(0;0\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}2a-2+b-1=0\\4-2a+2b=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2a+b=3\\-2a+2b=-4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=\frac{5}{3}\\b=-\frac{1}{3}\end{matrix}\right.\)
\(\Rightarrow A\left(\frac{5}{3};-\frac{2}{3}\right);B\left(-\frac{1}{3};-\frac{5}{3}\right)\) \(\Rightarrow\overrightarrow{AB}=\left(2;1\right)\)
Phương trình AB:
\(1\left(x-\frac{5}{3}\right)-2\left(y+\frac{2}{3}\right)=0\Leftrightarrow x-2y-3=0\)
\(d_1\) nhận \(\left(2;-m\right)\) là 1 vtpt
\(d_2\) nhận \(\left(-1;3\right)\) là 1 vtcp nên nhận \(\left(3;1\right)\) là 1 vtpt
Để 2 đường thẳng vuông góc
\(\Leftrightarrow2.\left(-1\right)+\left(-m\right).3=0\Rightarrow m=-\frac{2}{3}\)
1. Gọi \(M\left(x;y\right)\) là điểm bất kì nằm trên phân giác
\(\Rightarrow d\left(M;d_1\right)=d\left(M;d_2\right)\Leftrightarrow\dfrac{\left|3x-4y-3\right|}{\sqrt{3^2+\left(-4\right)^2}}=\dfrac{\left|12x+5y-12\right|}{\sqrt{12^2+5^2}}\)
\(\Leftrightarrow\left|39x-52y-39\right|=\left|60x+25y-60\right|\)
\(\Rightarrow\left[{}\begin{matrix}60x+25y-60=39x-52y-39\\60x+25y-60=-39x+52y+39\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}3x+11y-3=0\\11x-3y-11=0\end{matrix}\right.\)
Xét \(3x+11y-3=0\) có vtpt \(\left(3;11\right)\)
Ta có: \(cos^{-1}\dfrac{\left|3.3-11.4\right|}{\sqrt{3^2+\left(-4\right)^2}.\sqrt{3^2+11^2}}=52^0>45^0\) (ktm)
\(\Rightarrow11x-3y-11=0\) là pt đường phân giác góc nhọn tạo bởi d1 và d2
2.
Phương trình d1: \(\sqrt{2}x-\sqrt{2}y+2m=0\)
Đường tròn (C) có tâm \(O\left(0;0\right)\) bán kính \(R=1\)
Đường thẳng d1 tiếp xúc với (C) khi và chỉ khi:
\(d\left(O;d_1\right)=R\)
\(\Leftrightarrow\dfrac{\left|2m\right|}{\sqrt{2+2}}=1\Leftrightarrow\left|2m\right|=2\)
\(\Rightarrow m=\pm1\)