Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Đặt ƯCLN(2n+5; 3n+7)=d
Ta có: 2n+5 chia hết cho d \(\Rightarrow\) 6n+15 chai hết cho d.(1)
3n+7 chia hết cho d \(\Rightarrow\) 6n+14 chia hết cho d.(2)
Từ (1) và (2), ta có:
(6n+15)-(6n+14) chia hết cho d.
\(\Leftrightarrow1⋮d\)\(\Rightarrow d\in\) Ư(1) = \(\left\{1\right\}\)
Vậy ƯCLN ( 2n+5; 3n+7)=1
Vậy hai số đó là hai số nguyên tố cùng nhau.
4) Đặt: a=36.q; b= 36.p( q và p là hai số nguyên tố cùng nhau.)
Ta có: a+b= 36q+36p=36(q+p)=432
q+p=432:36=12
(q;p)=(1;11) (5;7) (7;5) (11;1)
\(\Rightarrow\)(a;b) =(36;396) (180;252) (252;180) (396;36)
Các câu khác tương tự nha bạn.
a) Vì BCNN (a,b)=60; mà a.b =360
=> ab:BCNN (a,b)= UWCLN (a,b)=360:60=6
Vì UWCLN (a,b)=6
=> a=6m;b=6n mà ƯCLN (m,n)=1
=>ab=6m.6n=36.(m.n)=360
= mn=360:36=10
Gỉa sử a>b
=>m>n, mà mn=10,ƯCLN (m,n)=1
Lập bảng giá trị :
m 10 5
n 1 2
a=6m 60 30
b=6n 6 12
Vậy nếu a=60 thì b=6
nếu a=30 thì b=12
Bài 5:
a: \(\Leftrightarrow x\in\left\{-8;-7;...;7;8;9\right\}\)
=>tổng là 9
b: \(\Leftrightarrow x\in\left\{-7;-6;...;6;7\right\}\)
=>Tổng là 0