K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 7 2018

1) a) \(\left(3x-1\right)\left(9x^2+3x+1\right)-4x\left(x-5\right)\)

\(=27x^3+9x^2+3x-9x^2-3x-1-4x^2+20x\)

\(=27x^3+\left(9x^2-9x^2-4x^2\right)+\left(3x-3x+20x\right)+\left(-1\right)\)

\(=27x^3-4x^2+20x-1\)

b)\(\left(7x+2\right)\left(3-4x\right)-\left(x+3\right)\left(x^2-3x+9\right)\)

\(=21x-28x^2+6-8x-x^3+3x^2-9x-3x^2+9x-27\)

\(=\left(21x-8x-9x+9x\right)+\left(-28x^2+3x^2-3x^2\right)\)\(+\left(6-27\right)\)\(+\left(-x^3\right)\)

\(=13x-28x^2-21-x^3\)

c)\(\left(4x+3\right)\left(4x-3\right)-\left(2-x\right)\left(4+2x+x^2\right)\)

\(=16x^2-12x+12x-9-8-4x-2x^2+4x+2x^2+x^3\)

\(=\left(16x^2-2x^2+2x^2\right)+\left(-12x+12x-4x+4x\right)\)\(+\left(-9-8\right)\)\(+x^3\)

\(=16x^2-17+x^3\)

d)\(\left(3x-8\right)\left(-5x+6\right)-\left(4x+1\right)\left(3x-2\right)\)

\(=-15x^2+18x+40x-48-12x^2+8x-3x+2\)

\(=\left(-15x^2-12x^2\right)+\left(18x+40x+8x-3x\right)\)\(+\left(-48+2\right)\)

\(=-27x^2+63x-46\)

e)\(\left(3x-6\right)4x-2x\left(3x+5\right)-4x^2\)

\(=12x^2-24x-6x^2-10x-4x^2\)

\(=\left(12x^2-6x^2-4x^2\right)+\left(-24x-10x\right)\)

\(=2x^2-34x\)

f)\(\left(5x-6\right)\left(6x-5\right)-x\left(3x+10\right)\)

\(=30x^2-25x-36x+30-3x^2-10x\)

\(=\left(30x^2-3x^2\right)+\left(-25x-36x-10x\right)+30\)

\(=27x^2-71x+30\)

5 tháng 7 2018

2) a)\(x\left(x+3\right)-x^2=6\)

\(\Rightarrow x^2+3x-x^2=6\)

\(\Rightarrow\left(x^2-x^2\right)+3x=6\)

\(\Rightarrow3x=6\)

\(\Rightarrow x=2\)

Vậy x=2

b) \(2x\left(x-5\right)+x\left(-2x-1\right)=6\)

\(\Rightarrow2x^2-10x-2x^2-x=6\)

\(\Rightarrow\left(2x^2-2x^2\right)+\left(-10x-x\right)=6\)

\(\Rightarrow-11x=6\)

\(\Rightarrow x=-\dfrac{6}{11}\)

\(\)Vậy \(x=-\dfrac{6}{11}\)

c) x(x+5)-(x+1)(x-2)=7

\(\Rightarrow x^2+5x-x^2+2x-x+2=7\)

\(\Rightarrow\left(x^2-x^2\right)+\left(5x+2x-x\right)=7-2\)

\(\Rightarrow6x=5\)

\(\Rightarrow x=\dfrac{5}{6}\)

Vậy x=\(\dfrac{5}{6}\)

d)\(\left(3x+4\right)\left(6x-3\right)-\left(2x+1\right)\left(9x-2\right)=10\)

\(\Rightarrow18x^2-9x+24x-12-18x^2+4x-9x+2=10\)

\(\Rightarrow\left(18x^2-18x^2\right)+\left(-9x+24x+4x-9x\right)+\left(-12+2\right)=10\)

\(\Rightarrow10x-10=10\)

\(\Rightarrow10x=20\)

\(\Rightarrow x=2\)

Vậy x=2

4 tháng 11 2020

tck đầu tiên chọn câu trả lời của mình đi

8 tháng 6 2019

Tìm x:

1. 3x (2x + 3) - (2x + 5).(3x - 2) = 8

\(\Leftrightarrow6x^2+9x-6x^2+4x-15x+10=0 \)

\(\Leftrightarrow-2x+10=0\Leftrightarrow x=5\)

Vậy x = 5

2. 4x (x -1) - 3(x2 - 5) -x2 = (x - 3) - (x + 4)

\(\Leftrightarrow4x^2-4x-3x^2+15-x^2=x-3-x-4\)

\(\Leftrightarrow-4x+15=-7\)

\(\Leftrightarrow-4x=-22\Leftrightarrow x=\frac{11}{2}\)

Vậy x = \(\frac{11}{2}\)

3. 2 (3x -1) (2x +5) - 6 (2x - 1) (x + 2) = -6

\(\Leftrightarrow2\left(6x^2+15x-2x-5\right)-6\left(2x^2+4x-x-2\right)=-6\)

\(\Leftrightarrow12x^2+30x-4x-10-12x^2-24x+6x+12=-6\)

\(\Leftrightarrow8x=-8\Leftrightarrow x=-1\)

Vậy x = -1

4. 3 ( 2x - 1) (3x - 1) - (2x - 3) (9x - 1) - 3 = -3

\(\Leftrightarrow3\left(6x^2-2x-3x+1\right)-18x^2+2x+27x-3-3=-3\)

\(\Leftrightarrow18x^2-6x-9x+3-18x^2+2x+27x-6=-3\)

\(\Leftrightarrow14x=0\Leftrightarrow x=0\)

Vậy x = 0

5. (3x - 1) (2x + 7) - ( x + 1) (6x - 5) = (x + 2) - (x - 5)

\(\Leftrightarrow6x^2+21x-2x-7-6x^2+5x-6x+5=7\)

\(\Leftrightarrow18x=9\Leftrightarrow x=\frac{1}{2}\)

Vậy x = \(\frac{1}{2}\)

6. 3xy (x + y) - (x + y) (x2 + y2 + 2xy) + y3 = 27

\(\Leftrightarrow3x^2y+3xy^2-\left(x+y\right)^3+y^3=27\)

\(\Leftrightarrow3x^2y+3xy^2-x^3-y^3-3x^2y-3xy^2+y^3=27\)

\(\Leftrightarrow-x^3=27\)

\(\Leftrightarrow x=-3\)

Vậy x = -3

7. 3x (8x - 4) - 6x (4x - 3) = 30

\(\Leftrightarrow24x^2-12x-24x^2+12x=30\)

\(\Leftrightarrow0=30\) ( vô lý)

Vậy pt vô nghiệm

8. 3x (5 - 2x) + 2x (3x - 5) = 20

\(\Leftrightarrow15x-6x^2+6x^2-10x=20\)

\(\Leftrightarrow5x=20\Leftrightarrow x=4\)

Vậy x = 4

5 tháng 3 2020

giúp mình với ;-;

5 tháng 3 2020

ghi này chả hiểu j bn ak

ghi rõ ra coi

18 tháng 6 2016

f/ \(3xy\left(x+y\right)-\left(x+y\right)\left(x^2+y^2+2xy\right)+y^3=27\)

\(3x^2y+3xy^2-\left(x+y\right)\left(x+y\right)^2+y^3=27\)

\(3x^2y+3xy^3-\left(x+y\right)^3+y^3=27\)

\(3x^2y+3xy^3-\left(x^3+3x^2y+3xy^2+b^3\right)+y^3=27\)

\(-x^3=27\)

\(x=-3\)

18 tháng 6 2016

Bài 1:

a/ \(3\left(2x-3\right)+2\left(2-x\right)=-3\)

\(6x-9+4-2x=-3\)

\(4x=-2\)

\(x=-\frac{1}{2}\)

b/ \(2x\left(x^2-2\right)+x^2\left(1-2x\right)-x^2=-12\)

\(2x^3-4x+x^2-2x^3-x^2=-12\)

\(-4x=-12\)

\(x=\frac{1}{3}\)

11 tháng 7 2021

\(\left(x^2+3\right)\left(3-x^2\right)\)

\(\left(x^2+3\right)\left(-x^2+3\right)\)

\(\left(-x^2+3\right).x^2+3\left(-x^2+3\right)\)

\(-x^2.x^2+3x^2+3\left(-x^2+3\right)\)

\(-x^2.x^2+3x^2-3x^2+9\)

\(-x^2.x^2+9\)

11 tháng 7 2021

\(\left(2x+5\right)\left(2x-5\right)\)

\(2x\left(2x-5\right)+5\left(2x-5\right)\)

\(4x^2-10x+5\left(2x-5\right)\)

\(4x^2-10x+10x-25\)

\(4x^2-25\)

12 tháng 2 2019

a)\(\left(2x+5\right)^2=\left(x+2\right)^2\)

\(\Leftrightarrow4x^2+20x+25=x^2+4x+4\)

\(\Leftrightarrow4x^2-x^2+20x-4x=4-25\)

\(\Leftrightarrow3x^2+16x=-21\)

\(\Leftrightarrow3x^2+16x+21=0\)

\(\Leftrightarrow3x^2+9x+7x+21=0\)

\(\Leftrightarrow3x\left(x+3\right)+7\left(x+3\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(3x+7\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\3x+7=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=\dfrac{-7}{3}\end{matrix}\right.\)

Vậy phương trình có tập nghiệm S = \(\left\{-3;\dfrac{-7}{3}\right\}\)

e)\(\left(x-2\right)\left(2x-3\right)=\left(4-2x\right)\left(x-2\right)\)

\(\Leftrightarrow\left(x-2\right)\left(2x-3\right)-\left(4-2x\right)\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(2x-3-4+2x\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(4x-7\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\4x-7=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{7}{4}\end{matrix}\right.\)

Vậy phương trình có tập nghiệm S=\(\left\{2;\dfrac{7}{4}\right\}\)

g)\(4x^2-1=\left(2x+1\right)\left(3x-5\right)\)

\(\Leftrightarrow\left(2x-1\right)\left(2x+1\right)-\left(2x+1\right)\left(3x-5\right)=0\)

\(\Leftrightarrow\left(2x+1\right)\left(2x-1-3x+5\right)=0\)

\(\Leftrightarrow\left(2x+1\right)\left(4-x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+1=0\\4-x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-1}{2}\\4\end{matrix}\right.\)

Vậy phương trình có tập nghiệm S = \(\left\{4;\dfrac{-1}{2}\right\}\)

22 tháng 4 2020

d, (x2 + 4x + 8)2 + 3x(x2 + 4x + 8) + 2x2 = 0

Đặt x2 + 4x + 8 = t ta được:

t2 + 3xt + 2x2 = 0

\(\Leftrightarrow\) t2 + xt + 2xt + 2x2 = 0

\(\Leftrightarrow\) t(t + x) + 2x(t + x) = 0

\(\Leftrightarrow\) (t + x)(t + 2x) = 0

Thay t = x2 + 4x + 8 ta được:

(x2 + 4x + 8 + x)(x2 + 4x + 8 + 2x) = 0

\(\Leftrightarrow\) (x2 + 5x + 8)[x(x + 4) + 2(x + 4)] = 0

\(\Leftrightarrow\) (x2 + 5x + \(\frac{25}{4}\) + \(\frac{7}{4}\))(x + 4)(x + 2) = 0

\(\Leftrightarrow\) [(x + \(\frac{5}{2}\))2 + \(\frac{7}{4}\)](x + 4)(x + 2) = 0

Vì (x + \(\frac{5}{2}\))2 + \(\frac{7}{4}\) > 0 với mọi x

\(\Rightarrow\left[{}\begin{matrix}x+4=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-4\\x=-2\end{matrix}\right.\)

Vậy S = {-4; -2}

Mình giúp bn phần khó thôi!

Chúc bn học tốt!!

22 tháng 4 2020

c) \(\frac{1}{x-1}\)+\(\frac{2x^2-5}{x^3-1}\)=\(\frac{4}{x^2+x+1}\) (ĐKXĐ:x≠1)

\(\frac{x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}\)+\(\frac{2x^2-5}{\left(x-1\right)\left(x^2+x+1\right)}\)=\(\frac{4\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)

⇒x2+x+1+2x2-5=4x-4

⇔3x2-3x=0

⇔3x(x-1)=0

⇔x=0 (TMĐK) hoặc x=1 (loại)

Vậy tập nghiệm của phương trình đã cho là:S={0}