Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(\frac{\left(2^3.5.7\right)\left(5^2.7^3\right)}{\left(2.5.7^2\right)^2}\)\(=\frac{2^3.5.7.5^2.7^3}{2^2.5^2.7^4}=\frac{2^3.5^3.7^4}{2^2.5^2.7^4}=10\)
b, \(\frac{4}{77}+\frac{4}{165}+\frac{4}{285}\)
\(=\frac{4}{7.11}+\frac{4}{11.15}+\frac{4}{15.19}\)
\(=\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{15}+\frac{1}{15}-\frac{1}{19}\)
\(=\frac{1}{7}-\frac{1}{19}\)
\(=\frac{19}{133}-\frac{7}{133}=\frac{12}{133}\)
Bài 2:
\(a,\left(x+\frac{2}{3}\right).\frac{-3}{5}+\frac{4}{7}=1\frac{4}{7}.x\)
\(\Rightarrow\frac{-3}{5}x+\frac{-2}{5}+\frac{4}{7}=\frac{11}{7}.y\)
\(\Rightarrow\frac{-3}{5}x+\frac{6}{35}=\frac{11}{7}.y\)
Từ đây làm nốt
b, \(\left|5x-2\right|\le0\)
\(\Rightarrow\left|5x\right|\le2\)( x \(\ge0\))
Mà không có số x nào nhân với 5 bé hơn hoặc bằng 2
\(\Rightarrow\)x không có giá trị thỏa mãn
c đề bài sai, chỉ tìm x chứ làm gì có y
d, \(\left(x-3\right).\left(2y+1\right)=7\)
TH1:
x - 3 = 1
x = 1 + 3
x = 4
2y + 1 = 7
2y = 7 - 1 = 6
y = 6 : 2 = 3
TH2:
x - 3 = 7
x = 7 + 3 = 10
2y + 1 = 1
2y = 1 - 1 = 0
y = 0 : 2 = 0
TH3:
x - 3 = -1
x = -1 + 3
x = 2
2y+ 1 = -7
2y = -7 - 1 = -8
y = (-8) : 2 = -4
TH4:
x - 3 = -7
x = -7 + 3
x = -4
2y + 1 = -1
2y = (-1) - 1
2y = -2
y = (-2) : 2 = -1
Vậy ......
g) \(\left(x+\frac{1}{2}\right)\left(\frac{2}{3}-2x\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+\frac{1}{2}=0\\\frac{2}{3}-2x=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{-1}{2}\\x=\frac{1}{3}\end{cases}}\)
Vây \(x\in\left\{\frac{-1}{2};\frac{1}{3}\right\}\)
a, \(\frac{1}{6}x+\frac{1}{10}-\frac{4}{15}x+1=0\)
\(\Leftrightarrow-\frac{1}{10}x=-\frac{11}{10}\)
\(\Leftrightarrow x=11\)
b,\(\left(\frac{1}{7}x-\frac{2}{7}\right)\left(-\frac{1}{5}x+\frac{3}{5}\right)\left(\frac{1}{3}x+\frac{4}{3}\right)=0\)
\(\Leftrightarrow\frac{1}{7}x-\frac{2}{7}=0\)hoặc \(-\frac{1}{5}x+\frac{3}{5}=0\)hoặc \(\frac{1}{3}x+\frac{4}{3}=0\)
+) \(\frac{1}{7}x-\frac{2}{7}=0\Leftrightarrow\frac{1}{7}x=\frac{2}{7}\Leftrightarrow x=2\)
+)\(-\frac{1}{5}x+\frac{3}{5}=0\Leftrightarrow-\frac{1}{5}x=-\frac{3}{5}\Leftrightarrow x=3\)
+)\(\frac{1}{3}x+\frac{4}{3}=0\Leftrightarrow\frac{1}{3}x=-\frac{4}{3}\Leftrightarrow x=-4\)
c, \(\frac{1}{2}x-\frac{11}{15}:\frac{33}{35}=-\frac{1}{3}\)
\(\Leftrightarrow\frac{1}{2}x-\frac{7}{9}=-\frac{1}{3}\)
\(\Leftrightarrow\frac{1}{2}x=\frac{4}{9}\)
\(\Leftrightarrow x=\frac{8}{9}\)
a/ \(\frac{1}{6}x+\frac{1}{10}-\frac{4}{15}x+1=0\)
\(\Rightarrow-\frac{1}{10}x=-\frac{11}{10}\)
\(\Rightarrow x=11\)
b/ \(\left(\frac{1}{7}x-\frac{2}{7}\right)\left(-\frac{1}{5}x+\frac{3}{5}\right)\left(\frac{1}{3}x+\frac{4}{3}\right)=0\)
\(\Rightarrow\frac{1}{7}x-\frac{2}{7}=0\Rightarrow\frac{1}{7}x=\frac{2}{7}\Rightarrow x=2\)
hoặc \(-\frac{1}{5}x+\frac{3}{5}=0\Rightarrow-\frac{1}{5}x=-\frac{3}{5}\Rightarrow x=3\)
hoặc \(\frac{1}{3}x+\frac{4}{3}=0\Rightarrow\frac{1}{3}x=-\frac{4}{3}\Rightarrow x=-4\)
Vậy x = 2, x = 3, x = -4
c/ \(\frac{1}{2}x-\frac{11}{15}:\frac{33}{35}=-\frac{1}{3}\)
\(\Rightarrow\frac{1}{2}x-\frac{7}{9}=-\frac{1}{3}\)
\(\Rightarrow\frac{1}{2}x=\frac{4}{9}\Rightarrow x=\frac{8}{9}\)
Vậy x = 8/9
Bài 1:
\(a,22\frac{1}{2}.\frac{7}{9}+50\%-1,25\)
=\(\frac{45}{2}.\frac{7}{9}+\frac{1}{2}-\frac{5}{4}\)
=\(\frac{35}{2}+\frac{1}{2}-\frac{5}{4}\)
=\(\frac{70}{4}+\frac{2}{4}-\frac{5}{4}\)
=\(\frac{67}{4}\)
\(b,1,4.\frac{15}{49}-\left(\frac{4}{5}+\frac{2}{3}\right):2\frac{1}{5}\)
=\(\frac{7}{5}.\frac{15}{49}-\left(\frac{12}{15}+\frac{10}{15}\right):\frac{11}{5}\)
=\(\frac{3}{7}-\frac{22}{15}.\frac{5}{11}\)
=\(\frac{3}{7}-\frac{2}{3}\)
=\(-\frac{5}{21}\)
\(c,125\%.\left(-\frac{1}{2}\right)^2:\left(1\frac{5}{6}-1,6\right)+2016^0\)
=\(\frac{5}{4}.\frac{1}{4}:\left(\frac{11}{6}-\frac{8}{5}\right)+1\)
=\(\frac{5}{16}:\frac{7}{30}+1\)
=\(\frac{131}{56}\)
\(d,1,4.\frac{15}{49}-\left(20\%+\frac{2}{3}\right):2\frac{1}{5}\)
=\(\frac{7}{5}.\frac{15}{49}-\left(\frac{1}{5}+\frac{2}{3}\right):\frac{11}{5}\)
=\(\frac{3}{7}-\frac{13}{15}:\frac{11}{5}\)
=\(\frac{3}{7}-\frac{13}{33}\)
=\(\frac{8}{231}\)
Bài đ làm giống hệt như bài c
Bài 2 :
\(a,\left|\frac{3}{4}.x-\frac{1}{2}\right|=\frac{1}{4}\)
=>\(\left[{}\begin{matrix}\frac{3}{4}.x-\frac{1}{2}=\frac{1}{4}\\\frac{3}{4}.x-\frac{1}{2}=-\frac{1}{4}\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}\frac{3}{4}.x=\frac{1}{4}+\frac{1}{2}=\frac{3}{4}\\\frac{3}{4}.x=-\frac{1}{4}+\frac{1}{2}=\frac{1}{4}\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=\frac{3}{4}:\frac{3}{4}=1\\x=\frac{1}{4}:\frac{3}{4}=\frac{1}{3}\end{matrix}\right.\)
Vậy x ∈{1;\(\frac{1}{3}\)}
\(b,\frac{5}{3}.x-\frac{2}{5}.x=\frac{19}{10}\)
=>\(\frac{19}{15}.x=\frac{19}{10}\)
=>\(x=\frac{19}{10}:\frac{19}{15}=\frac{3}{2}\)
Vậy x ∈ {\(\frac{3}{2}\)}
c,\(\left|2.x-\frac{1}{3}\right|=\frac{2}{9}\)
=>\(\left[{}\begin{matrix}2.x-\frac{1}{3}=\frac{2}{9}\\2.x-\frac{1}{3}=-\frac{2}{9}\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}2.x=\frac{2}{9}+\frac{1}{3}=\frac{5}{9}\\2.x=-\frac{2}{9}+\frac{1}{3}=\frac{1}{9}\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=\frac{5}{9}:2=\frac{5}{18}\\x=\frac{1}{9}:2=\frac{1}{18}\end{matrix}\right.\)
Vậy x∈{\(\frac{5}{18};\frac{1}{18}\)}
\(d,x-30\%.x=-1\frac{1}{5}\)
=\(70\%x=-\frac{6}{5}\)
=\(\frac{7}{10}.x=-\frac{6}{5}\)
=>\(x=-\frac{6}{5}:\frac{7}{10}=-\frac{12}{7}\)
Vậy x∈{\(-\frac{12}{7}\)}
Bài 2
a/
\(\Rightarrow\left[{}\begin{matrix}\frac{3}{4}.x-\frac{1}{2}=\frac{1}{4}\\\frac{3}{4}.x-\frac{1}{2}=-\frac{1}{4}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\frac{3}{4}.x=\frac{1}{4}+\frac{1}{2}\\\frac{3}{4}.x=-\frac{1}{4}+\frac{1}{2}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\frac{3}{4}.x=\frac{3}{4}\\\frac{3}{4}.x=\frac{1}{4}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{3}{4}:\frac{3}{4}\\x=\frac{1}{4}:\frac{3}{4}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=1\\x=\frac{1}{3}\end{matrix}\right.\)
Vậy \(x=1\) hoặc \(x=\frac{1}{3}\)
b/ Đặt x làm thừa số chung rồi tính như bình thường
c/ Tương tự câu a
d/ Tương tự câu b
b) \(\dfrac{1}{3}+\dfrac{1}{6}+\dfrac{1}{10}+...+\dfrac{2}{x\left(x+1\right)}=\dfrac{499}{1000}\)
\(\dfrac{2}{6}+\dfrac{2}{12}+\dfrac{2}{20}+...+\dfrac{2}{x\left(x+1\right)}=\dfrac{499}{1000}\)
\(\dfrac{2}{2.3}+\dfrac{2}{3.4}+\dfrac{2}{4.5}+...+\dfrac{2}{x\left(x+1\right)}=\dfrac{499}{1000}\)
a) \(\dfrac{2}{3}x-\dfrac{3}{2}x=\dfrac{5}{12}\)
\(-\dfrac{5}{6}x=\dfrac{5}{12}\)
\(x=-\dfrac{1}{2}\)
b) \(\dfrac{2}{5}+\dfrac{3}{5}\cdot\left(3x-3.7\right)=-\dfrac{53}{10}\)
\(\dfrac{3}{5}\left(3x-3.7\right)=-\dfrac{57}{10}\)
\(3x-3.7=-\dfrac{19}{2}\)
\(3x=-5.8\)
\(x=-\dfrac{29}{15}\)
c) \(\dfrac{7}{9}:\left(2+\dfrac{3}{4}x\right)+\dfrac{5}{9}=\dfrac{23}{27}\)
\(\dfrac{7}{9}:\left(2+\dfrac{3}{4}x\right)=\dfrac{8}{27}\)
\(2+\dfrac{3}{4}x=\dfrac{21}{8}\)
\(\dfrac{3}{4}x=\dfrac{5}{8}\)
\(x=\dfrac{5}{6}\)
d) \(-\dfrac{2}{3}x+\dfrac{1}{5}=\dfrac{3}{10}\)
\(-\dfrac{2}{3}x=\dfrac{1}{10}\)
\(x=-\dfrac{3}{20}\)
a) -287 + 499 + (-499) + 285
=-287+285
=-2
b: Ta có: \(1992+\left(-53\right)+158+\left(-247\right)+\left(-1592\right)\)
\(=\left(1992-1592\right)+\left(-53-247\right)+158\)
\(=400-300+158=258\)