K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
26 tháng 2 2020

1. Tổng cấp số cộng với \(u_1=1;d=2;u_{51}=101\)

\(\Rightarrow S_{51}=\frac{51\left(1+101\right)}{2}=2601\)

2. Tổng cấp số cộng với \(u_1=2;d=3\Rightarrow212=u_{71}\)

\(S_{71}=\frac{71\left(2+212\right)}{2}=7597\)

3. Tổng cấp số cộng với \(u_1=0;d=1;n=13\)

\(\Rightarrow S_{13}=\frac{13.\left(0+12\right)}{2}=78\)

9 tháng 4 2017

Đồng hồ đánh số tiếng chuông là: S = 1 + 2 + 3 +....+ 12. Đây là tổng của 12 số hạng của cấp số cộng có u1 = 1, u12 = 12. Do đó áp dụng công thức tính tổng,

ta có S = = 78.

Vậy đồng hồ đánh 78 tiếng chuông


4 tháng 2 2017

Lúc 1 giờ đồng hồ đánh 1 tiếng chuông.

Lúc 2 giờ đồng hồ đánh 2 tiếng chuông

......

Lúc 12 giờ trưa đồng hồ đánh 12 tiếng chuông.

Do đó, từ 0 giờ đến 12 giờ trưa, đồng hồ đánh số tiếng chuông là:

1+ 2+ 3+ .... + 11+ 12

Đây là tổng 12 số hạng của cấp số cộng có số hạng đầu u1= 1, công sai d = 1

Vậy tổng số tiếng chuông đồng hồ trong khoảng thời gian từ 0 đến 12 giờ trưa là:

Giải bài 5 trang 98 sgk Đại số 11 | Để học tốt Toán 11

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

Ta có: \({u_1} = 1,\;\;{u_2} = 2, \ldots ,{u_{12}} = 12\).

\({u_2} - {u_1} = {u_3} - {u_2} =...={u_{12}} - {u_{11}} = 1\), do đó \(\left( {{u_n}} \right)\) là cấp số cộng với \({u_1} = 1,\;d = 1\).

Tổng số tiếng chuông trong khoảng từ 0 đến 12 giờ trưa là:

\({S_{12}} = \frac{{12 \times \left( {1 + 12} \right)}}{2} = 78\).

1 tháng 8 2017

Chọn B

Số tiếng chuông đồng hồ bằng S=1+2+3+4+…+12=78 tiếng

NV
29 tháng 2 2020

Tổng cấp số cộng với 12 số hạng, có \(u_1=1;u_{12}=12\)

\(\Rightarrow S_{12}=\frac{12\left(1+12\right)}{2}=78\)

NV
11 tháng 3 2022

Gọi con số xuất hiện trên xúc xắc thứ i (với \(1\le i\le5\) ) là \(x_i\) (với \(1\le x_i\le6\))

Ta cần tìm số bộ nghiệm nguyên dương của pt:

\(x_1+x_2+x_3+x_4+x_5=14\)

Đặt \(y_i=x_i-1\Rightarrow y_1+y_2+y_3+y_4+y_5=9\) (1) với \(y_i\) không âm

Đưa về bài toán chia kẹo Euler: tìm số nghiệm nguyên không âm của pt:

\(\left\{{}\begin{matrix}y_1+y_2+y_3+y_4+y_5=9\\y_i\le5\end{matrix}\right.\)

Theo bài toán chia kẹo, số nghiệm nguyên ko âm bất kì của (1) là: \(C_{9+5-1}^{5-1}=C_{13}^4\)

Bây giờ, do vai trò của \(y_i\) như nhau, ta xét pt: \(\left\{{}\begin{matrix}y_1+y_2+y_3+y_4+y_5=9\\y_1\ge6\end{matrix}\right.\)

Đặt \(y_1-6=z_1\Rightarrow z_1+y_2+y_3+y_4+y_5=3\) (2)

\(\Rightarrow\) (2) có số nghiệm nguyên ko âm là: \(C_{5+3-1}^{5-1}=C_7^4\)

Do ko thể tồn tại cùng lúc 2 giá trị i; j sao cho \(\left\{{}\begin{matrix}y_1+y_2+y_3+y_4+y_5=9\\y_i\ge6;y_j\ge6\end{matrix}\right.\)

Nên các trường hợp \(\left\{{}\begin{matrix}y_1+y_2+y_3+y_4+y_5=9\\y_i\ge6\end{matrix}\right.\) là độc lập (các tập hợp này giao nhau đều bằng rỗng)

Do đó, số nghiệm của pt: \(\left\{{}\begin{matrix}y_1+y_2+y_3+y_4+y_5=9\\y_i\le5\end{matrix}\right.\) là: \(C_{13}^4-5.C_7^4\)