Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.Tính
a.\(\dfrac{7}{23}\left[(-\dfrac{8}{6})-\dfrac{45}{18}\right]=\dfrac{7}{23}.-\dfrac{12}{6}=-\dfrac{7}{6}\)
b.\(\dfrac{1}{5}\div\dfrac{1}{10}-\dfrac{1}{3}(\dfrac{6}{5}-\dfrac{9}{4})=2-(-\dfrac{7}{20})=\dfrac{47}{20}\)
c.\(\dfrac{3}{5}.(-\dfrac{8}{3})-\dfrac{3}{5}\div(-6)=-\dfrac{3}{2}\)
d.\(\dfrac{1}{2}.(\dfrac{4}{3}+\dfrac{2}{5})-\dfrac{3}{4}.(\dfrac{8}{9}+\dfrac{16}{3})=-\dfrac{19}{5}\)
e.\(\dfrac{6}{7}\div(\dfrac{3}{26}-\dfrac{3}{13})+\dfrac{6}{7}.(\dfrac{1}{10}-\dfrac{8}{5})=-\dfrac{61}{7}\)
Bài 2
a.\(1^2_5x+\dfrac{3}{7}=\dfrac{4}{5}\)
\(x=\dfrac{13}{49}\)
b.\(\left|x-1,5\right|=2\)
Xảy ra 2 trường hợp
TH1
\(x-1,5=2\)
\(x=3,5\)
TH2
\(x-1,5=-2\)
\(x=-0,5\)
Vậy \(x=3,5\) hoặc \(x=-0,5\) .
Ngại làm quá trời ơi,lần sau bn tách ra nhá làm vậy mỏi tay quá.
2) $\dfrac{x+4}{2000}+\dfrac{x+3}{2001}=\dfrac{x+2}{2002}+\dfrac{x+1}{2003}$
$=>\dfrac{x+4}{2000}+1+\dfrac{x+3}{2001}+1=\dfrac{x+2}{2002}+1+\dfrac{x+1}{2003}+1$
$=>\dfrac{x+4}{2000}+\dfrac{2000}{2000}+\dfrac{x+3}{2001}+\dfrac{2001}{2001}=\dfrac{x+2}{2002}+\dfrac{2002}{2002}+\dfrac{x+1}{2003}+\dfrac{2003}{2003}$
$=>\dfrac{x+2004}{2000}+\dfrac{x+2004}{2001}=\dfrac{x+2004}{2002}+\dfrac{x+2004}{2003}$
$=>\dfrac{x+2004}{2000}+\dfrac{x+2004}{2001}-\dfrac{x+2004}{2002}-\dfrac{x+2004}{2003}=0$
$=>(x+2004)(\dfrac{1}{2000}+\dfrac{1}{2001}-\dfrac{1}{2002}-\dfrac{1}{2003}=0$
$=>x+2004=0$
$=>x=-2004$
3) Ta có : $A=\dfrac{1}{1.2}+\dfrac{1}{3.4}+\dfrac{1}{5.6}+...+\dfrac{1}{99.100}$
$=>A=\dfrac{1}{2}+\dfrac{1}{12}+...+\dfrac{1}{99.100}>\dfrac{1}{2}+\dfrac{1}{12}=\dfrac{7}{12}$
$=>A>\dfrac{7}{12}(1)$
Ta lại có : $A=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}$
$=>A=(1-\dfrac{1}{2}+\dfrac{1}{3})-(\dfrac{1}{4}-\dfrac{1}{5})-...-(\dfrac{1}{98}-\dfrac{1}{99})-\dfrac{1}{100}<(1-\dfrac{1}{2}+\dfrac{1}{3}=\dfrac{5}{6}$
$=>A<\dfrac{5}{6}(2)$
Từ (1)(2) => đpcm.
1: =>1/3:x=3/5-2/3=9/15-10/15=-1/15
=>x=-1/3:1/15=5
2: \(\Leftrightarrow x\cdot\dfrac{2}{3}-3=\dfrac{2}{5}\cdot\left(-10\right)=-4\)
=>x*2/3=-1
=>x=-3/2
3: \(\Leftrightarrow\dfrac{8}{3}:x=\dfrac{25}{12}:\dfrac{-3}{50}=\dfrac{25}{12}\cdot\dfrac{-50}{3}\)
hay x=-48/625
9: =>x=-2*3/1,5=-4
8: =>2/3:x=5/2:-3/10=5/2*(-10)/3=-50/6=-25/3
=>x=-2/3:25/3=-2/3*3/25=-2/25
a: \(=\left|\dfrac{3}{2}-\dfrac{7}{3}\right|^2+\dfrac{1}{4}=\dfrac{17}{18}\)
b: \(=\left|1-2-\dfrac{1}{3}\right|+\dfrac{5}{6}=1+\dfrac{1}{3}+\dfrac{5}{6}=\dfrac{13}{6}\)
c: \(=\left|\dfrac{3}{2}-\dfrac{7}{4}\right|-\dfrac{7}{4}=-\dfrac{3}{2}\)
d: =x-5+8-x=3
B = .................
Xét thừa số 63.1,2 - 21.3,6 = 0 nên B = 0
\(C=\left|\dfrac{4}{9}-\left(\dfrac{\sqrt{2}}{2}\right)^2\right|+\left|0,4+\dfrac{\dfrac{1}{3}-\dfrac{2}{5}-\dfrac{3}{7}}{\dfrac{2}{3}-\dfrac{4}{5}-\dfrac{6}{7}}\right|\)
\(C=\left|\dfrac{4}{9}-\dfrac{1}{2}\right|+\left|0,4+\dfrac{\dfrac{1}{3}-\dfrac{2}{5}-\dfrac{3}{7}}{2\left(\dfrac{1}{3}-\dfrac{2}{5}-\dfrac{3}{7}\right)}\right|\)
\(C=\left|\dfrac{4}{9}-\dfrac{1}{2}\right|+\left|0,4+\dfrac{1}{2}\right|=\dfrac{1}{18}+\dfrac{9}{10}=\dfrac{43}{45}\)
Mình làm câu 1,2 trước, câu 3 sau
Câu 1:
\(\sqrt{x^2}=0\)
=> \(\left(\sqrt{x^2}\right)^2=0^2\)
\(\Leftrightarrow x^2=0\Leftrightarrow x=0\)
Câu 2:
\(A=\left(0,75-0,6+\dfrac{3}{7}+\dfrac{3}{12}\right)\left(\dfrac{11}{7}+\dfrac{11}{3}+2,75-2,2\right)\)
\(A=\left(\dfrac{3}{4}-\dfrac{3}{5}+\dfrac{3}{7}+\dfrac{3}{13}\right)\left(\dfrac{11}{7}+\dfrac{11}{3}+\dfrac{11}{4}-\dfrac{11}{5}\right)\)
\(A=3\left(\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{7}+\dfrac{1}{13}\right)\cdot11\left(\dfrac{1}{7}+\dfrac{1}{3}+\dfrac{11}{4}-\dfrac{11}{5}\right)\)
\(A=33\cdot\dfrac{491}{1820}\cdot\dfrac{221}{420}=\dfrac{3580863}{764400}\)
a, \(\dfrac{3}{7}+\dfrac{4}{7}x=\dfrac{1}{3}\)
\(\Rightarrow\) \(\dfrac{4}{7}x=\dfrac{1}{3}-\dfrac{3}{7}\)
\(\Rightarrow\) \(\dfrac{4}{7}x=\dfrac{-2}{21}\)
\(\Rightarrow x=\dfrac{-2}{21}:\dfrac{4}{7}\)
\(\Rightarrow x=\dfrac{-1}{6}\)
b, \(25-\left(5-x\right)=-7\)
\(\Rightarrow\) \(5-x=25-\left(-7\right)\)
\(\Rightarrow5-x=32\)
\(\Rightarrow x=5-32\)
\(\Rightarrow x=-27\)
c, \(\dfrac{3}{4}+\dfrac{1}{4}:x=\dfrac{2}{5}\)
\(\Rightarrow\dfrac{1}{4}:x=\dfrac{2}{5}-\dfrac{3}{4}\)
\(\Rightarrow\dfrac{1}{4}:x=\dfrac{-7}{20}\)
\(\Rightarrow x=\dfrac{1}{4}:\dfrac{-7}{20}\)
\(\Rightarrow x=\dfrac{-5}{7}\)
d, \(2x\left(x-\dfrac{1}{7}\right)=0\)
\(\Rightarrow\) \(\left[{}\begin{matrix}2x=0\\x-\dfrac{1}{7}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0:2\\x=0+\dfrac{1}{7}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{7}\end{matrix}\right.\)
e, \(\left|\dfrac{1}{2}x-\dfrac{3}{4}\right|-7=-3\)
\(\Rightarrow\left|\dfrac{1}{2}x-\dfrac{3}{4}\right|=-3+7\)
\(\Rightarrow\left|\dfrac{1}{2}x-\dfrac{3}{4}\right|=4\)
\(\Rightarrow\left[{}\begin{matrix}\dfrac{1}{2}x-\dfrac{3}{4}=4\\\dfrac{1}{2}x-\dfrac{3}{4}=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\dfrac{1}{2}x=4+\dfrac{3}{4}\\\dfrac{1}{2}x=-4+\dfrac{3}{4}\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{1}{2}x=\dfrac{19}{4}\\\dfrac{1}{2}x=\dfrac{-13}{4}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{19}{4}:\dfrac{1}{2}\\x=\dfrac{-13}{4}:\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{19}{2}\\x=\dfrac{-13}{2}\end{matrix}\right.\)
a)\(\dfrac{3}{7}+\dfrac{4}{7}x=\dfrac{1}{3}\)
\(\dfrac{4}{7}x=\dfrac{1}{3}-\dfrac{3}{7}\)
\(\dfrac{4}{7}x=\dfrac{-2}{21}\)
\(x=\dfrac{-2}{21}:\dfrac{4}{7}\)
\(x=\dfrac{-1}{6}\)
b)\(25-\left(5-x\right)=-7\)
\(5-x=25-\left(-7\right)\)
\(5-x=32\)
x= -27
c)\(\dfrac{3}{4}+\dfrac{1}{4}:x=\dfrac{2}{5}\)
\(\dfrac{1}{4}:x=\dfrac{2}{5}-\dfrac{3}{4}\)
\(\dfrac{1}{4}:x=\dfrac{-7}{20}\)
\(x=\dfrac{1}{4}:\dfrac{-7}{20}\)
\(x=\dfrac{-5}{7}\)
d)\(2x\left(x-\dfrac{1}{7}\right)=0\)
⇒\(\left[{}\begin{matrix}2x=0\\x-\dfrac{1}{7}=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{7}\end{matrix}\right.\)
e)\(|\dfrac{1}{2}x-\dfrac{3}{7}|-7=-3\)
\(\left|\dfrac{1}{2}x-\dfrac{3}{7}\right|=-3+7\)
\(\left|\dfrac{1}{2}x-\dfrac{3}{7}\right|=4\)
⇒\(\left[{}\begin{matrix}\dfrac{1}{2}x-\dfrac{3}{4}=4\\\dfrac{1}{2}x-\dfrac{3}{4}=-4\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}\dfrac{1}{2}x=4\dfrac{3}{4}\Rightarrow x=9\dfrac{1}{2}=\dfrac{19}{2}\\\dfrac{1}{2}x=-3\dfrac{1}{4}\Rightarrow x=\dfrac{-13}{2}\end{matrix}\right.\)
Bài 1:
a) Ta có: \(\dfrac{7^4\cdot3-7^3}{7^4\cdot6-7^3\cdot2}\)
\(=\dfrac{7^3\cdot\left(7\cdot3-1\right)}{7^3\cdot2\left(7\cdot3-1\right)}\)
\(=\dfrac{1}{2}\)
c) Ta có: \(E=1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{100}}\)
\(\Leftrightarrow\dfrac{1}{3}\cdot E=\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{101}}\)
\(\Leftrightarrow E-\dfrac{1}{3}\cdot E=1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{100}}-\left(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{101}}\right)\)
\(\Leftrightarrow E\cdot\dfrac{2}{3}=1-\dfrac{1}{3^{101}}\)
\(\Leftrightarrow E=\dfrac{3-\dfrac{3}{3^{101}}}{2}=\dfrac{1-\dfrac{1}{3^{100}}}{2}\)
thanks