Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2/ \(\frac{2}{3}S=\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{23.24.25}=\frac{3-1}{1.2.3}+\frac{4-2}{2.3.4}+...+\frac{25-23}{23.24.25}\)
\(\frac{2}{3}S=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{23.24}-\frac{1}{24.25}=\frac{1}{2}-\frac{1}{24.25}\Rightarrow S=\left(\frac{1}{2}-\frac{1}{24.25}\right):\frac{2}{3}\)
1/
\(\frac{2}{3}S=\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{99.101}=\frac{3-1}{1.3}+\frac{5-3}{3.5}+...+\frac{101-99}{99.101}\)
\(\frac{2}{3}S=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}=1-\frac{1}{101}=\frac{100}{101}\Rightarrow S=\frac{100}{101}.\frac{3}{2}=\frac{150}{101}\)
\(S=\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{\left(n-1\right).n.\left(n+1\right)}+...+\frac{1}{23.24.25}\)
\(=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{\left(n-1\right).n}-\frac{1}{n.\left(n+1\right)}+...+\frac{1}{23.24}-\frac{1}{24.25}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{24.25}\right)=\frac{299}{1200}\)
\(=\frac{1}{2}\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{23.24.25}\right)=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{23.24}-\frac{1}{24.25}\right)\)
\(=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{600}\right)=\frac{1}{2}.\frac{299}{600}=\frac{299}{1200}\)
\(S=\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{23.24.25}\)
\(S=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{23.24}-\frac{1}{24.25}\right)\)
\(S=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{24.25}\right)\)
\(S=\frac{1}{4}-\frac{1}{24.50}\)
Dễ thấy với mọi số tự nhiên n > 1 , ta có :
\(\frac{2}{\left(n-1\right).n.\left(n+1\right)}=\frac{\left(n+1\right)-\left(n-1\right)}{\left(n-1\right).n.\left(n+1\right)}=\frac{1}{\left(n-1\right).n}-\frac{1}{n.\left(n+1\right)}\)
Sử dụng hệ thức trên cho từng số hạng trong tổng sau :
\(2S=\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{\left(n-1\right).n.\left(n+1\right)}+\frac{2}{23.24.25}\)
\(=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+....+\frac{1}{\left(n-1\right).n}-\frac{1}{n.\left(n+1\right)}+...+\frac{1}{23.24}-\frac{1}{24.25}\)
Để ý rằng trong vế phải của hệ thức trên , trừ 2 số hạng đầu và cuối , các số hạng còn lại tạo thành từng cặp đối nhau.
Do đó , có thể rút gọn :
\(2S=\frac{1}{1.2}-\frac{2}{24.25}=\frac{299}{600}\)
Vậy , ta được \(S=\frac{299}{600}\)
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(A=\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+...+\frac{100-99}{99.100}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(A=1-\frac{1}{100}=\frac{99}{100}\)
\(B=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\)
\(B=\frac{3-1}{1.3}+\frac{5-3}{3.5}+\frac{7-5}{5.7}+...+\frac{101-99}{99.101}\)
\(B=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\)
\(B=1-\frac{1}{101}=\frac{100}{101}\)
\(C=\frac{3^2}{10}+\frac{3^2}{40}+\frac{3^2}{88}+...+\frac{3^2}{340}\)
\(C=3\left(\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+...+\frac{3}{17.20}\right)\)
\(C=3\left(\frac{5-2}{2.5}+\frac{8-5}{5.8}+\frac{11-8}{8.11}+...+\frac{20-17}{17.20}\right)\)
\(C=3\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{17}-\frac{1}{20}\right)\)
\(C=3\left(\frac{1}{2}-\frac{1}{20}\right)=\frac{27}{20}\)
\(D=\frac{7}{1.3}+\frac{7}{3.5}+\frac{7}{5.7}+...+\frac{7}{99.101}\)
\(D=\frac{7}{2}B=\frac{7}{2}.\frac{100}{101}=\frac{350}{101}\)
\(T=\frac{4}{2.4}+\frac{4}{4.6}+\frac{4}{6.8}+...+\frac{4}{2008.2010}\)
\(T=2.\left(\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+...+\frac{2}{2008.2010}\right)\)
\(T=2.\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{2008}-\frac{1}{2010}\right)\)
\(T=2.\left(\frac{1}{2}-\frac{1}{2010}\right)\)
\(T=2.\frac{502}{1005}=\frac{1004}{1005}\)
\(\Rightarrow T=\frac{1004}{1005}\)
\(A=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{2007.2009}+\frac{1}{2009+2011}\)
\(A=\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{2009+2011}\right)\)
\(A=\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2009}-\frac{1}{2011}\right)\)
\(A=\frac{1}{2}.\left(1-\frac{1}{2011}\right)\)
\(A=\frac{1}{2}.\frac{2010}{2011}\)
\(\Rightarrow A=\frac{1005}{2011}\)
= 2 x [1 - 1/3 + 1/3 - 1/5 + 1/5 -1/7 +1/7 -1/9 + .., +1/99 - 1/101
= 2 x [ 1 - 1/101 ]
= 2 x 100/101
= 200/101
t cho mik nha
\(\frac{2}{1.3}\)+\(\frac{2}{3.5}\)+\(\frac{2}{5.7}\)+.........+\(\frac{2}{99.101}\)
=\(\frac{1}{1}\)-\(\frac{1}{3}\)+\(\frac{1}{3}\)-\(\frac{1}{5}\)+\(\frac{1}{5}\)-\(\frac{1}{7}\)+....+\(\frac{1}{99}\)-\(\frac{1}{101}\)
= 1 - \(\frac{1}{101}\)= \(\frac{100}{101}\)
a)Xét 1/2-1/3-1/6=3/6-2/6-1/6=0
=> (1+2+3+...+2018).(3/1.2+3/2.3+...+3/2018.2019).(1/2-1/3-1/6)=(1+2+3+...+2018).(3/1.2+3/2.3+...+3/2018.2019).0=0
b) 4A=1.2.3.4+2.3.4.4+..+x(x+1)(x+2)4
=1.2.3.4+2.3.4.5-1.2.3.4+...+x(x+1)(x+2)(x+3)-x(x+1)(x+2)(x-1)
= (x-1)x(x+1)(x+2)
=> A=x(x+1)(x+2)(x-1)/4
\(\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{\left\{\left(2x+1\right).\left(2x+3\right)\right\}}\right)=\frac{49}{99}\)
\(\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2x+1}-\frac{1}{2x+3}\right)=\frac{49}{99}\)
\(\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{2x+3}\right)=\frac{49}{99}\)
\(\frac{1}{2}.\cdot\left(\frac{2x+3}{2x+3}-\frac{1}{2x+3}\right)=\frac{49}{99}\)
\(\frac{1}{2}.\frac{2x+2}{2x+3}=\frac{49}{99}\)
\(\frac{2x+2}{2x+3}=\frac{49}{99}:\frac{1}{2}\)
\(\frac{2x+2}{2x+3}=\frac{98}{99}\)
=) \(2x+2=98\)và \(2x+3=99\)
TH1 : \(2x+2=98\)
\(2x=98-2\)
\(2x=96\)
\(x=96:2\)
\(x=48\)( THỎa mãn )
TH2 :
\(2x+3=99\)
\(2x=99-3\)
\(2x=96\)
\(x=96:2\)
\(x=48\)( THỎa mãn )
Vậy x = 48
3/1*3+3/3*5+......+3/99*101
=3/2*(2/1*3+3/3*5+.............+2/99*101)
=3/2*(1-1/3+1/3-1/5+..........+1/99-1/101)
=3/2*(1-1/101)
=3/2*100/101
=150/101
Câu 1
=>S=2/3( 2/(1.3) + 2/(3.5)+.....+ 2/(99.101) )
=>S=2/3(1-1/3+1/3-1/5+...+1/99-1/101)
=>S=2/3(1-1/101)
=>S=2/3.100/101
=>S=200/303