K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 3 2018

2.  a) \(3^{200}=\left(3^2\right)^{100}=9^{100}\)

          \(2^{300}=\left(2^3\right)^{100}=8^{100}\)

Vì \(9^{100}>8^{100}\Rightarrow3^{200}>2^{300}\)

b) \(71^{50}=\left(71^2\right)^{25}=5041^{25}\)

     \(37^{75}=\left(3^3\right)^{25}=27^{25}\)

Vì \(5041^{25}>27^{25}\Rightarrow71^{50}>37^{75}\)

c) \(\frac{201201}{202202}=\frac{201201:1001}{202202:1001}=\frac{201}{202}\)

      \(\frac{201201201}{202202202}=\frac{201201201:1001001}{202202202:1001001}=\frac{201}{202}\)

Vì \(\frac{201}{202}=\frac{201}{202}\Rightarrow\frac{201201}{202202}=\frac{201201201}{202202202}\)

27 tháng 4 2020

Gyvyghghgbhg

14 tháng 7 2018

a,3^200 và 2^300

3^200=(3^2)^100=9^100

2^300=(2^3)^100=8^100

Vì 9^100>8^100=>3^200>2^300

Vậy 3^200>2^300

b, 71^50 và 37^75

71^50=(71^2)^25=5041^25

37^75=(37^3)^25=50653^25

Vì 5041^25<50653^25=> 71^50<37^75

Vậy  71^50<37^75

c, 201201/202202 và 201201201/202202202

201201201/202202202=201201/202202

=> 201201/202202=201201201/202202202

Vậy 201201/202202=201201201/202202202

14 tháng 7 2018

a)

Ta có:3200=32.100=(32)100=9100

2300=23.100=(23)100=8100

Vì 9100>8100

Nên 3200>2300

b) 

Ta có: 7150=712.25=(712)25=504125

3775=373.25=(373)25=5065325

Vì 504125<5065325

Nên 7150<3775

c)

Ta có:

201201/202202=201.1001/202.1001=201/202

201201201/202202202=201.1001001/202.1001001001= 201/202

Vì 201/202=201/202

Nên 201201/202202=201201201/202202202

10 tháng 3 2016

a. 3200 = (32)100 = 9100

2300 = (23)100 = 8100

Vì 9100 > 8100 => 3200 > 2300

12 tháng 2 2020

Bạn ấn vào câu hỏi tương tự nhé !!!! >:

12 tháng 2 2020

Sorry

27 tháng 6 2017

a)\(A=\frac{17}{23}.\frac{8}{16}.\frac{23}{17}.\left(-80\right).\frac{3}{4}\)

    \(A=\left(\frac{17}{23}.\frac{23}{17}\right).\left(\frac{8}{16}.\frac{3}{4}\right).\left(-80\right)\)

     \(A=\frac{3}{8}.\left(-80\right)\)

     \(A=-30\)

b)\(C=\left(\frac{13}{23}+\frac{1313}{2323}-\frac{131313}{232323}\right).\left(\frac{1}{3}+\frac{1}{4}-\frac{7}{12}\right)\)

   \(C=\left(\frac{13}{23}+\frac{1313}{2323}-\frac{131313}{232323}\right).0\)

   \(C=0\)