Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1: \(\frac{2^{-1}+3^{-1}}{2^{-1}-3^{-1}}+\frac{2^{-1}.1}{2^3}=\frac{\frac{1}{2}+\frac{1}{3}}{\frac{1}{2}-\frac{1}{3}}+\frac{\frac{1}{2}}{8}=\frac{\frac{5}{6}}{\frac{1}{6}}+\frac{1}{6}=\frac{30}{6}+\frac{1}{6}=\frac{81}{16}\)
Câu 2:\(\frac{-1}{3}-1+\frac{\frac{1}{4}}{2}=\frac{-4}{3}+\frac{1}{8}=\frac{-29}{24}\)
Câu 3:\(\frac{4^6.9^5+6^9.120}{8^4.3^{12}-6^{11}}=\frac{2^{12}.3^{10}+2^{12}.3^{10}.5}{2^{11}.3^{10}\left(2.3^2-3\right)}=\frac{2^{11}.3^{10}\left(2+2.5\right)}{2^{11}.3^{10}\left(2.3^2-3\right)}=\frac{4}{5}\)
Câu 4: \(\frac{1}{1-\frac{1}{1-2^{-1}}}+\frac{1}{1+\frac{1}{1+2^{-1}}}=\frac{1}{1-\frac{1}{1-\frac{1}{2}}}+\frac{1}{1+\frac{1}{1+\frac{1}{2}}}=\frac{1}{1-\frac{1}{\frac{1}{2}}}+\frac{1}{1+\frac{1}{\frac{3}{2}}}=-1+\frac{3}{5}=\frac{-2}{5}\)
#Đoàn Thị Huyền Đan ơi: Câu 1 với câu 4 thì đúng rồi còn câu 2 với 3 thì sai k/q rồi nhé!
Có: \(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\)
\(=2-1+1-\frac{1}{2}+...+\frac{1}{99}-\frac{1}{100}\)
\(=2-\frac{1}{100}=\frac{199}{100}\)
Có: \(1+2+3+...+100=\frac{101\left(100-1+1\right)}{2}=5050\)
\(\Rightarrow A=\frac{5050.\frac{-17}{60}.0}{\frac{199}{100}}=0\)
Cũng khuya rồi , mình làm câu 1 thôi nhé !
\(\frac{2.5^{22}-9.5^{21}}{25^{10}}=\frac{2.5^{22}-9.5^{21}}{\left(5^2\right)^{10}}\)
\(\frac{5^{21}.\left(2.5-9\right)}{5^{20}}=5.\left(10-9\right)=5\)
A = \(\frac{\frac{3}{4}-\frac{3}{11}+\frac{3}{13}}{\frac{5}{4}-\frac{5}{11}+\frac{5}{13}}+\frac{\frac{1}{2}-\frac{1}{3}+\frac{1}{4}}{\frac{5}{4}-\frac{5}{6}+\frac{5}{8}}\)
\(=\frac{3.\left(\frac{1}{4}-\frac{1}{11}+\frac{1}{13}\right)}{5.\left(\frac{1}{4}-\frac{1}{11}+\frac{1}{13}\right)}+\frac{\frac{1}{2}-\frac{1}{3}+\frac{1}{4}}{\frac{5}{2}.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{4}\right)}\)
\(=\frac{3}{5}+\frac{1}{\frac{5}{2}}\)
\(=\frac{3}{5}+\frac{2}{5}=1\)
b) B = \(\frac{2^{12}.3^5-4^6.9^2}{\left(2^2.3\right)^6.8^4.3^5}-\frac{5^{10}.7^3:25^5.49}{\left(125.7\right)^3+5^9.14^3}\)
\(=\frac{2^{12}.3^5-\left(2^2\right)^6.\left(3^2\right)^2}{2^{12}.3^6+\left(2^3\right)^4.3^5}-\frac{5^{10}.7^3-\left(5^2\right)^5.7^2}{\left(5^3\right)^3.7^3+5^9.\left(7.2\right)^3}\)
\(=\frac{2^{12}.3^5-2^{12}.3^4}{2^{12}.3^6+2^{12}.3^5}-\frac{5^{10}.7^3-5^{10}-7^2}{5^9.7^3+5^9.7^3.2^3}\)
\(=\frac{2^{12}.3^4.\left(3-1\right)}{2^{12}.3^5\left(3+1\right)}-\frac{5^{10}.7^2.\left(7-1\right)}{5^9.7^3\left(1+2^3\right)}\)
\(=\frac{1}{3.2}-\frac{5.2}{7.3}\)
\(=\frac{7}{3.2.7}-\frac{5.2.2}{7.3.2}\)
\(=\frac{7}{42}-\frac{20}{42}\)
\(=-\frac{13}{42}\)
\(A=\frac{\left(1+2+...+100\right)\left(\frac{1}{2}^2-...-\frac{1}{5}\right)\left(2,4.42-21.4,8\right)}{1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}}\)
=> \(A=\frac{\left(1+2+...+100\right)\left(\frac{1}{2}-...-\frac{1}{5}\right).0}{1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}}\)= 0