K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 12 2018

\(\left(2x-1\right)\left(x-5\right)-x^2+10x-25=0\)

\(\left(2x-1\right)\left(x-5\right)-\left(x^2-10x+25\right)=0\)

\(\left(2x-1\right)\left(x-5\right)-\left(x-5\right)^2=0\)

\(\left(x-5\right)\left(2x-1-x+5\right)=0\)

\(\left(x-5\right)\left(x+4\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-5=0\\x+4=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=5\\x=-4\end{cases}}\)

Vậy \(\orbr{\begin{cases}x=5\\x=-4\end{cases}}\)

16 tháng 12 2018

\(\left(5n-3\right)^2-9=\left(5n-3\right)^2-3^2=\left(5n-3-3\right)\left(5n-3+3\right)=5n\left(5n-6\right)\)

Ta có: \(5⋮5\)

\(\Rightarrow5n\left(5n-6\right)⋮5\forall n\in Z\)

\(\Rightarrow\left(5n-3\right)^2-9⋮5\forall n\in Z\)

                                  đpcm

5 tháng 10 2019

a, ĐKXĐ: \(\hept{\begin{cases}x^3+1\ne0\\x^9+x^7-3x^2-3\ne0\\x^2+1\ne0\end{cases}}\)

b, \(Q=\left[\left(x^4-x+\frac{x-3}{x^3+1}\right).\frac{\left(x^3-2x^2+2x-1\right)\left(x+1\right)}{x^9+x^7-3x^2-3}+1-\frac{2\left(x+6\right)}{x^2+1}\right]\)

\(Q=\left[\frac{\left(x^3+1\right)\left(x^4-x\right)+x-3}{\left(x+1\right)\left(x^2-x+1\right)}.\frac{\left(x-1\right)\left(x+1\right)\left(x^2-x+1\right)}{\left(x^7-3\right)\left(x^2+1\right)}+1-\frac{2\left(x+6\right)}{x^2+1}\right]\)

\(Q=\left[\left(x^7-3\right).\frac{\left(x-1\right)}{\left(x^7-3\right)\left(x^2+1\right)}+1-\frac{2\left(x+6\right)}{x^2+1}\right]\)

\(Q=\frac{x-1+x^2+1-2x-12}{x^2+1}\)

\(Q=\frac{\left(x-4\right)\left(x+3\right)}{x^2+1}\)

14 tháng 12 2018

Bài 1 :

\(x^2\left(x-3\right)-4x+12=0\)

\(x^2\left(x-3\right)-4\left(x-3\right)=0\)

\(\left(x-3\right)\left(x^2-4\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-3=0\\x^2-4=0\end{cases}\Rightarrow\orbr{\begin{cases}x=3\\x=\left\{\pm2\right\}\end{cases}}}\)

Bài 2 :

\(x-1-x^2\)

\(=-\left(x^2-x+1\right)\)

\(=-\left[x^2-2\cdot x\cdot\frac{1}{2}+\left(\frac{1}{2}\right)^2+\frac{3}{4}\right]\)

\(=-\left[\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\right]\)

Vì \(\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge0\forall x\)

\(\Rightarrow-\left[\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\right]\le0\forall x\left(đpcm\right)\)

10 tháng 12 2018

\(x^2-x+1=x^2-2.x.\frac{1}{2}+\left(\frac{1}{2}\right)^2+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\forall x\)

\(-x^2+4x-5=-\left(x^2-2.x.2+2^2\right)-1=-\left(x-2\right)^2-1< 0\forall x\)

\(a\left(2a-3\right)-2a\left(a+1\right)=a\left(2a-3-2a-2\right)=-5a⋮5\forall a\inℤ\)

9 tháng 12 2018

a) Phân thức M xác định khi và chỉ khi :

+) \(2x-2\ne0\Leftrightarrow x\ne1\)

+) \(2x+2\ne0\Leftrightarrow x\ne-1\)

+) \(1-\frac{x-3}{x+1}\ne0\)

\(\Leftrightarrow x-3\ne x+1\)

\(\Leftrightarrow0x\ne4\left(\text{luôn đúng}\right)\)

Vậy \(x\ne\left\{1;-1\right\}\)

b) \(M=\left(\frac{x-2}{2x-2}-\frac{x+3}{2x+2}+\frac{3}{2x-2}\right):\left(1-\frac{x-3}{x+1}\right)\)

\(M=\left(\frac{\left(x-2\right)\left(2x+2\right)}{\left(2x-2\right)\left(2x+2\right)}-\frac{\left(x+3\right)\left(2x-2\right)}{\left(2x-2\right)\left(2x+2\right)}+\frac{3\left(2x+2\right)}{\left(2x-2\right)\left(2x+2\right)}\right):\left(\frac{x+1-x+3}{x+1}\right)\)

\(M=\left(\frac{2x^2-2x-4-2x^2-4x+6+6x+6}{\left(2x-2\right)\left(2x+2\right)}\right):\left(\frac{4}{x+1}\right)\)

\(M=\frac{8}{2\left(x-1\right)2\left(x+1\right)}\cdot\frac{x+1}{4}\)

\(M=\frac{8\left(x+1\right)}{4\left(x-1\right)\left(x+1\right)\cdot4}\)

\(M=\frac{8\left(x+1\right)}{8\left(x+1\right)\left(x-1\right)}\)

\(M=\frac{1}{x-1}\)

9 tháng 12 2018

\(M=\left(\frac{x-2}{2x-2}-\frac{x+3}{2x+2}+\frac{3}{2x-2}\right):\left(1-\frac{x-3}{x+1}\right)\)

\(=\left(\frac{x+1}{2x-2}-\frac{x+3}{2x+2}\right):\left(\frac{4}{x+1}\right)=\left[\frac{\left(x+1\right)\left(2x+2\right)-\left(x+3\right)\left(2x-2\right)}{\left(2x-2\right)\left(2x+2\right)}\right]:\left(\frac{4}{x+1}\right)\)

\(=\left[\frac{2x^2+4x+2-2x^2+2x+6-6x+6}{4x^2-4}\right]:\left(\frac{4}{x+1}\right)\)

\(=\left[\frac{6x+8-6x+6}{4x^2-4}\right]:\left(\frac{4}{x+1}\right)\)

\(=\frac{14}{4x^2-4}:\left(\frac{4}{x+1}\right)=\frac{14x+14}{16x^2-16}=\frac{7x+7}{8x^2-8}\)

18 tháng 4 2017

Cho  .Chứng minh :

15 tháng 12 2018

\(A=\left(3x-5\right)\left(2x+11\right)-\left(2x+3\right)\left(3x+7\right)\)

 \(=6x^2+33x-10x-55-6x^2-14x-9x-21\)

  \(=-73\)ko phụ thuộc vào biến x

Vậy

15 tháng 12 2018

A = 6x +33x - 10x - 55 -6x -14x -9x - 21

   = 76 -> Ðpcm