Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(\frac{3}{4}.x-\frac{9}{16}\right).\left(\frac{1}{3}+\frac{-3}{5}:x\right)=0\)
<=> \(\hept{\begin{cases}\frac{3}{4}.x-\frac{9}{16}=0\\\frac{1}{3}-\frac{3}{5}.\frac{1}{x}=0\end{cases}}\)
<=> \(\hept{\begin{cases}x=\frac{3}{4}\\\frac{3}{5x}=\frac{1}{3}\end{cases}}\)
<=> \(\hept{\begin{cases}x=\frac{3}{4}\\x=\frac{9}{5}\end{cases}}\)
\(\left(x-\frac{1}{3}\right)\left(\frac{2}{5}+x\right)>0\)
<=> \(\hept{\begin{cases}x-\frac{1}{3}>0\\x+\frac{2}{5}>0\end{cases}}\)hoặc \(\hept{\begin{cases}x-\frac{1}{3}< 0\\x+\frac{2}{5}< 0\end{cases}}\)
<=> \(\hept{\begin{cases}x>\frac{1}{3}\\x>\frac{-2}{5}\end{cases}}\)hoặc \(\hept{\begin{cases}x< \frac{1}{3}\\x< \frac{-2}{5}\end{cases}}\)
<=>\(x>\frac{1}{3}\)hoặc \(x< \frac{-2}{5}\)
câu c tương tự nha
học tốt
\(\left(2x+\frac{3}{5}\right)^2-\frac{9}{25}=0\)
\(\Leftrightarrow\left(2x+\frac{3}{5}\right)^2=\frac{9}{25}\)
\(\Leftrightarrow\left(2x+\frac{3}{5}\right)^2=\left(\frac{3}{5}\right)^2\)
\(\Leftrightarrow\orbr{\begin{cases}2x+\frac{3}{5}=\frac{3}{5}\\2x+\frac{3}{5}=-\frac{3}{5}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}2x=0\\2x=-\frac{6}{5}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=-\frac{3}{5}\end{cases}}\)
_Tần vũ_
\(3\left(3x-\frac{1}{2}\right)^3+\frac{1}{9}=0\)
\(\Leftrightarrow3\left(3x-\frac{1}{2}\right)^3=-\frac{1}{9}\)
\(\Leftrightarrow\left(3x-\frac{1}{2}\right)^3=-\frac{1}{27}\)
\(\Leftrightarrow\left(3x-\frac{1}{2}\right)^3=\left(-\frac{1}{3}\right)^3\)
\(\Leftrightarrow3x-\frac{1}{2}=\frac{-1}{3}\)
\(\Leftrightarrow3x=\frac{1}{6}\)
\(\Leftrightarrow x=\frac{1}{18}\)
_Tần Vũ_
\(\left(x+\frac{1}{5}\right)^2+\frac{17}{25}=\frac{26}{25}\\ \left(x+\frac{1}{5}\right)^2=\frac{26}{25}-\frac{17}{25}\\ \left(x+\frac{1}{5}\right)^2=\frac{9}{25}\\ \left|\left(x+\frac{1}{5}\right)\right|=\frac{3}{5}\)
TH1: \(x=\frac{3}{5}-\frac{1}{5}\\ x=\frac{2}{5}\)
TH2: \(\left|\left(x+\frac{1}{5}\right)\right|=-\frac{3}{5}\\ x=-\frac{3}{5}-\frac{1}{5}\\ x=-\frac{4}{5}\)
\(a,\left(x+\frac{1}{5}\right)^2+\frac{17}{25}=\frac{26}{25}\)
\(\Rightarrow\left(x+\frac{1}{5}\right)^2=\frac{9}{25}\)
\(\Rightarrow\left(x+\frac{1}{5}\right)^2=\left(\frac{3}{5}\right)^2\)
\(\Rightarrow x+\frac{1}{5}=\frac{3}{5}\)
\(\Rightarrow x=\frac{2}{5}\)
\(b,-1\frac{5}{27}-\left(3x-\frac{7}{9}\right)^3=-\frac{24}{27}\)
\(\Rightarrow-\frac{32}{27}-\left(3x-\frac{7}{9}\right)^3=-\frac{24}{27}\)
\(\Rightarrow\left(3x-\frac{7}{9}\right)^3=-\frac{32}{27}+\frac{24}{27}\)
\(\Rightarrow\left(3x-\frac{7}{9}\right)^3=-\frac{8}{27}\)
\(\Rightarrow\left(3x-\frac{7}{9}\right)^3=\left(-\frac{2}{3}\right)^3\)
\(\Rightarrow3x-\frac{7}{9}=-\frac{2}{3}\)
\(\Rightarrow3x=-\frac{2}{3}+\frac{7}{9}\)
\(\Rightarrow3x=\frac{1}{9}\)
\(\Rightarrow x=\frac{1}{27}\)
\(c,\left(x+\frac{1}{2}\right)\left(\frac{2}{3}-2x\right)=0\)
\(\Rightarrow\) \(\left[\begin{array}{nghiempt}x+\frac{1}{2}=0\\\frac{2}{3}-2x=0\end{array}\right.\) \(\Rightarrow\) \(\left[\begin{array}{nghiempt}x=-\frac{1}{2}\\2x=\frac{2}{3}\end{array}\right.\) \(\Rightarrow\) \(\left[\begin{array}{nghiempt}x=-\frac{1}{2}\\x=\frac{1}{3}\end{array}\right.\)
\(3\left(2x-\frac{5}{4}\right)=\left(3-1\frac{1}{2}\right)\left(x-\frac{1}{2}\right)\)
\(\Leftrightarrow6x-\frac{15}{4}=\frac{3}{2}x+\frac{1}{12}\)
\(\Leftrightarrow\frac{9}{2}x+\frac{3}{4}=\frac{15}{4}\)
\(\Leftrightarrow\frac{9}{2}x=3\)
\(\Leftrightarrow x=\frac{2}{3}\)
a, 1/2x +3/5(x-2)=3
1/2x +3/5.x -3/5.2=3
(1/2+3/5).x-6/5=3
11/10.x=21/5
x=42/11
b,| 1/2x-3/2|= 1/2
=> 1/2x-3/2=1/2
hoac 1/2x-3/2=-1/2
=> 1/2x=2
hoac 1/2x=1
=> x=4 hoac x=2