K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 8 2018

\(\left|3-x\right|=x-5\)

\(\Rightarrow\orbr{\begin{cases}3-x=x-5\\3-x=5-x\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}-x-x=-5-3\\-x+x=5-3\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}-2x=-8\\x\in\varnothing\end{cases}}\)

\(\Rightarrow x=4\)

vậy_

21 tháng 8 2018

1) \(\left|3-x\right|=x-5\)

\(3x-x\ge0\text{ để: }x\ge0\Rightarrow x\ge0;\left|3x-x\right|=3x-x\)

\(3x-x< 0\text{ để: }x< 0\Rightarrow\left|3x-x\right|=-\left(3x-x\right)\)

\(\Rightarrow\orbr{\begin{cases}x< 0\\x\ge0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{3}\\x=-5\end{cases}}\)

=> Không có gtrị tmyk.

29 tháng 4 2019

đổi k ko,mk hứa sẽ k lại(nếu ko làm chó!!!!!!!!!!!!!)

29 tháng 4 2019

Bài 1: <Cho là câu a đi>:

a. \(\frac{1}{2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x\left(x+1\right)}=\frac{49}{50}\) 

\(\rightarrow\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x\left(x+1\right)}=\frac{49}{50}\) 

\(\rightarrow1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{49}{50}\) 

\(\rightarrow1-\frac{1}{x+1}=\frac{49}{50}\) 

\(\rightarrow\frac{1}{x+1}=1-\frac{49}{50}=\frac{1}{50}\) 

\(\rightarrow x+1=50\rightarrow x=49\) 

Vậy x = 49.

11 tháng 4 2019

\(a,\left[\frac{4}{5}+\frac{2}{3}\right]:\frac{1}{5}-1,4\cdot\left[\frac{-5}{7}\right]^2\)

\(=\left[\frac{4\cdot3}{15}+\frac{2\cdot5}{15}\right]:\frac{1}{5}-1,4\cdot\frac{-5}{7}\cdot\frac{-5}{7}\)

\(=\left[\frac{12}{15}+\frac{10}{15}\right]:\frac{1}{5}-\frac{14}{10}\cdot\frac{25}{49}\)

\(=\frac{22}{15}:\frac{1}{5}-\frac{7}{5}\cdot\frac{25}{49}\)

\(=\frac{22}{15}\cdot\frac{5}{1}-\frac{7}{5}\cdot\frac{25}{49}\)

\(=\frac{22\cdot5}{15\cdot1}-\frac{7\cdot25}{5\cdot49}=\frac{22\cdot1}{3\cdot1}-\frac{1\cdot5}{1\cdot7}=\frac{22}{3}-\frac{5}{7}\)

= ...

Tự tính

Bài 2 : \(a,3-\left|\frac{1}{2}x-\frac{1}{3}\right|=\frac{1}{2}\)

\(\Rightarrow\left|\frac{1}{2}x-\frac{1}{3}\right|=\frac{1}{2}+3\)

\(\Rightarrow\left|\frac{1}{2}x-\frac{1}{3}\right|=\frac{7}{2}\)

\(\Rightarrow\hept{\begin{cases}\frac{1}{2}x-\frac{1}{3}=\frac{7}{2}\\\frac{1}{2}x-\frac{1}{3}=-\frac{7}{2}\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{23}{3}\\x=\frac{-19}{3}\end{cases}}\)

Vậy \(x\in\left\{\frac{23}{3};\frac{-19}{3}\right\}\)

b, \(0,6-160\%< x\le3\frac{2}{3}:\frac{22}{18}\)

\(\Rightarrow0,6-\frac{160}{100}< x\le\frac{11}{3}:\frac{22}{18}\)

\(\Rightarrow0,6-\frac{8}{5}< x\le\frac{11}{3}\cdot\frac{18}{22}\)

\(\Rightarrow0,6-1,6< x\le3\)

\(\Rightarrow-1< x\le3\)

\(\Rightarrow x\in\left\{0;1;2;3\right\}\)

9 tháng 3 2019

Bài 1:

\(\left(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\right)\):\(\left(\frac{1}{25}+\frac{1}{26}+....+\frac{1}{50}\right)\)

\(\left[\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{49}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{50}\right)\right]\):\(\left(\frac{1}{25}+\frac{1}{26}+....+\frac{1}{50}\right)\)

\(\left[\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{49}+\frac{1}{50}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{50}\right)\right]\):\(\left(\frac{1}{25}+\frac{1}{26}+....+\frac{1}{50}\right)\)

=\(\left[\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{25}\right)\right]\):\(\left(\frac{1}{25}+\frac{1}{26}+....+\frac{1}{50}\right)\)

=\(\frac{1}{26}+\frac{1}{27}+....+\frac{1}{26}\):\(\left(\frac{1}{25}+\frac{1}{26}+....+\frac{1}{50}\right)\)

......????

18 tháng 5 2020

câu 1b

Gọi d là ƯCLN (3n-7, 2n-5), d thuộc N*

Ta có : 3n-7 chia ht cho d , 2n_5 chia ht cho d

suy ra: 2(3n-7) chia ht cho d ,  3(2n-5) chia ht cho d

suy ra 6n-14 chia ht cho d, 6n-15 chia ht cho d

dấu suy ra [(6n -15) - (6n-14)] chia ht cho d dấu suy ra 1 chia ht cho d suy ra d =1

Vậy......

          

18 tháng 5 2020

1) b. Để chứng tỏ \(\frac{3n-7}{2n-5}\) là phân số tối giản 

Ta cần chứng minh: ( 3n - 7; 2n - 5 ) = 1 

Thật vậy: ( 3n - 7 ; 2n - 5 ) = ( 2n - 5 ; ( 3n - 7 ) - ( 2n - 5 ) )  = ( 2n - 5; n - 2 ) = ( n - 2; n - 3 ) = ( n - 2; 1 ) = 1

=> \(\frac{3n-7}{2n-5}\) là phân số tối giản 

3) \(A=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{12}\)

Ta có: \(\frac{1}{3}+\frac{1}{4}=\frac{7}{12}>\frac{6}{12}=\frac{1}{2}\)

\(\frac{1}{5}+\frac{1}{6}+\frac{1}{7}=\left(\frac{1}{5}+\frac{1}{7}\right)+\frac{1}{6}=\frac{12}{35}+\frac{1}{6}>\frac{12}{36}+\frac{1}{6}=\frac{2}{6}+\frac{1}{6}=\frac{1}{2}\)

\(\frac{1}{8}+\frac{1}{9}+\frac{1}{10}+\frac{1}{11}+\frac{1}{12}=\left(\frac{1}{8}+\frac{1}{9}+\frac{1}{10}\right)+\left(\frac{1}{11}+\frac{1}{12}\right)>\frac{1}{3}+\frac{1}{6}=\frac{1}{2} \)

=> A > 1/2 + 1/2 + 1/2 + 1/2 = 2

tung từng vế một thôi

bạn nhác quá éo chịu suy nghĩ

bài này dễ vl

13 tháng 5 2017

Bài 1:

a, \(\frac{5}{1.6}+\frac{5}{6.11}+...+\frac{5}{\left(5x+1\right)\left(5x+6\right)}=\frac{2010}{2011}\)

\(1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+...+\frac{1}{5x+1}-\frac{1}{5x+6}=\frac{2010}{2011}\)

\(1-\frac{1}{5x+6}=\frac{2010}{2011}\)

\(\frac{1}{5x+6}=1-\frac{2010}{2011}\)

\(\frac{1}{5x+6}=\frac{1}{2011}\)

=> 5x + 6 = 2011

    5x = 2011 - 6

    5x = 2005

    x = 2005 : 5

    x = 401

b, \(\frac{7}{x}+\frac{4}{5.9}+\frac{4}{9.13}+...+\frac{4}{41.45}=\frac{29}{45}\)

\(\frac{7}{x}+\left(\frac{4}{5.9}+\frac{4}{9.13}+...+\frac{4}{41.45}\right)=\frac{29}{45}\)

\(\frac{7}{x}+\left(\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{41}-\frac{1}{45}\right)=\frac{29}{45}\)

\(\frac{7}{x}+\left(\frac{1}{5}-\frac{1}{45}\right)=\frac{29}{45}\)

\(\frac{7}{x}+\frac{8}{45}=\frac{29}{45}\)

\(\frac{7}{x}=\frac{29}{45}-\frac{8}{45}\)

\(\frac{7}{x}=\frac{7}{15}\)

=> x = 15

c, ghi lại đề

d, ghi lại đề

Bài 2:

\(\frac{1}{n}-\frac{1}{n+a}=\frac{n+a}{n\left(n+a\right)}-\frac{n}{n\left(n+a\right)}=\frac{a}{n\left(n+a\right)}\)

14 tháng 8 2016

Ta có

\(\begin{cases}\left|x-\frac{1}{2}\right|\ge0\\\left|y+\frac{3}{2}\right|\ge0\\\left|x+y-z-\frac{1}{2}\right|\ge0\end{cases}\)

Maf \(\left|x-\frac{1}{2}\right|+\left|y+\frac{3}{2}\right|+\left|x+y-z-\frac{1}{2}\right|=0\)

\(\Rightarrow\begin{cases}x-\frac{1}{2}=0\\y+\frac{3}{2}=0\\x+y-z-\frac{1}{2}=0\end{cases}\)

\(\Rightarrow\begin{cases}x=\frac{1}{2}\\y=-\frac{3}{2}\\x+y-z=\frac{1}{2}\end{cases}\)

\(\Rightarrow\begin{cases}x=\frac{1}{2}\\y=-\frac{3}{2}\\\frac{1}{2}-\frac{3}{2}-z=\frac{1}{2}\end{cases}\)

\(\Rightarrow\begin{cases}x=\frac{1}{2}\\y=-\frac{3}{2}\\-z=\frac{3}{2}\end{cases}\)

\(\Rightarrow\begin{cases}x=\frac{1}{2}\\y=-\frac{3}{2}\\z=-\frac{3}{2}\end{cases}\)

17 tháng 4 2018

a) Ta có: \(\frac{x}{9}=\frac{-12}{27}\)

=> \(27.x=-12.9\)

=> \(27x=-108\)

=> \(x=108:27\)

=>\(x=4\)

3 tháng 9 2016

\(3\left(2x-\frac{5}{4}\right)=\left(3-1\frac{1}{2}\right)\left(x-\frac{1}{2}\right)\)

\(\Leftrightarrow6x-\frac{15}{4}=\frac{3}{2}x+\frac{1}{12}\)

\(\Leftrightarrow\frac{9}{2}x+\frac{3}{4}=\frac{15}{4}\)

\(\Leftrightarrow\frac{9}{2}x=3\)

\(\Leftrightarrow x=\frac{2}{3}\)

3 tháng 9 2016

\(\frac{1}{3}x+\frac{2}{5}\left(x-1\right)=0\)

\(\Leftrightarrow\frac{1}{3}x+\frac{2}{5}x-\frac{2}{5}=0\)

\(\Leftrightarrow\frac{11}{15}x=\frac{2}{5}\)

\(\Leftrightarrow x=\frac{6}{11}\)