Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
5y chia hết cho 4.
y thuộc 2 và 6.
Cộng các chữ số vào:
Với 2 trường hợp.
Tìm ra giá trị của x.
Có 2 số.
Chúc em hoc tốt6^
Do 2x + 1 là ước của 28 => 28 chia hết cho 2x + 1
Mà 2x + 1 là số lẻ, \(x\in N\)nên \(2x+1\ge1\)
=> \(2x+1\in\left\{1;7\right\}\)
=> \(2x\in\left\{0;6\right\}\)
=> \(x\in\left\{0;3\right\}\)
\(\left(x+2\right)\left(y-1\right)=2\)
Th1 : \(\hept{\begin{cases}x+2=1\\y-1=2\end{cases}\Rightarrow\hept{\begin{cases}x=-1\\y=3\end{cases}}}\)
Th2 : \(\hept{\begin{cases}x+2=2\\y-1=1\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\y=2\end{cases}}}\)
Bài 2:
Theo đề, ta có: \(a\in BC\left(24;220\right)\)
mà a nhỏ nhất
nên a=1320
Gọi k là thương khi a chia cho 3
Ta có a=3k+2
=> a {5;8;11;14;...}
p là thương khi a chia cho 5.
Ta có a=5k+3
=> a { 8;13;18;23;...}
Vậy a là 8
a) Gọi số nhỏ nhất cần tìm là a
Do số cần tìm chia 3 dư 1, chia 4 dư 2, chia 5 dư 3, chia 6 dư 4
\(\Rightarrow a-1⋮3;a-2⋮4;a-3⋮5;x-4⋮6\)
\(\Rightarrow a-1+3⋮3;a-2+4⋮4;a-3+5⋮3;a-4+6⋮6\)
\(\Rightarrow a+2⋮3;4;5;6\)
\(\Rightarrow a+2\in BC\left(3;4;5;6\right)\)
Mà BCNN(3;4;5;6) = 60 \(\Rightarrow a+2\in B\left(60\right)\)
Ta có: a + 2 chia hết cho 60; a chia hết cho 13
=> a + 2 + 180 chia hết cho 60; a + 182 chia hết cho 13
=> a + 182 chia hết cho 60; 13
\(\Rightarrow a+182\in BC\left(60;13\right)\)
Mà (60;13)=1 => BCNN(60;13) = 780
\(\Rightarrow a+182\in B\left(780\right)\)
=> a = 780.k + 598 \(\left(k\in N\right)\)
Để a nhỏ nhất thì k nhỏ nhất => k = 0
=> a = 780.0 + 598 = 598
Vậy số nhỏ nhất cần tìm là 598
b) Theo câu a thì dạng chung của các số tự nhiên có tính chất trên (như đề bài) là: 780.k + 598 \(\left(k\in N\right)\)
123x43y chia hết cho 3
=>1+2+3+x+4+3+y chia hết cho 3
13+x+y chia hết cho 3
=>x=0 và y=2 vì
13+0+2=15 chia hết cho 3
và x và y nhỏ nhất!
Vậy số cần tìm là 1230432
1230432