K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 11 2015

mik chi la dc cau 2 thui

goi d la uoc chung cua (20n+9;30n+13)

(20n+9)chia het cho d (30n+13)chiahet cho d

(GIANG BAI:sau khi tinh ngoai nhap: UCLN cua (20n+9;30n+13) la 60)

luu y:ban ko ghi phan giang bai vao tap

3(20n+9) - 2(30n+13)

(60n+27) - (60n+26)

   con 1 chia het d 

suy ra:d thuoc U(1)={1}

suy ra:UCLN(20n+9 va 30n+13)=1

vay:20n+9 va 30n+13 la2 so nguyen cung nhau

chu thich:ban vui long thay chu suy ra bang dau suy ra trong toan hoc va thay chua chia het bang dau chia het trong toan hoc

16 tháng 1 2016

câu 1:

Ta có :2n-1=2(n-3)+5

Để 2(n-3)+5 chia hết cho 2n-3 thì n-3 thuộc Ư(5)  *vì 2(n-3) chia hết cho n-3*

Mà Ư(5)={1;-1;5;-5}

Ta có bảng sau:

   n-3       -5         -1         1             5


    n        -2          2          4            8

  Vậy n thuộc {-2;2;4;8}

 

18 tháng 4 2021

ậyGọi ƯCLN của 20n + 9 ; 30n + 13 là d   (d ​\(\in\) N*).
20n + 9 \(⋮\) d \(\Rightarrow\)3(20n + 9) = 60n + 27 \(⋮\)d   (1)
30n + 13 \(⋮\)d \(\Rightarrow\)2(30n + 13) = 60n + 26 \(⋮\)d   (2)
Từ (1), (2) ta có: (60n + 27) - (60n + 26) = 1 \(⋮\)d \(\Leftrightarrow\)d = 1.
Vậy 20n + 9 ; 30n + 13 nguyên tố cùng nhau.

7 tháng 11 2016

Gọi d là ƯCLN của tử và mẫu .
=>12n +1 chia hết cho d              60n+5 chia hết cho d
                                      =>
     30n +2chia hết cho d              60n +4 chia hết cho d
=> (60n+5) -(60n+4) chia hết cho d
=>1 chia hết cho d
=> d=1 => điều phải chứng minh (đpcm)

13 tháng 12 2016

1. Vì p+3>2 =>p+3 là số lẻ =>p là số chẵn mà p là số nguyên tố =>p=2

2.Ta gọi ƯCLN(n+1;2n+3) là a với a là số tự nhiên

=>n+1;2n+3 chia hết cho a

=>2.(n+1);2n+3 chia hết cho a

=>2n+2;2n+3 chia hết cho a

=>(2n+3)-(2n+2) chia hết cho a

=>1 chia hết cho a

=>a=1

=>n+1 và 2n+3 là hai số nguyên tố cùng nhau

AH
Akai Haruma
Giáo viên
18 tháng 7 2024

1.

$4-n\vdots n+1$

$\Rightarrow 5-(n+1)\vdots n+1$

$\Rightarrow 5\vdots n+1$
$\Rightarrow n+1\in \left\{1; 5\right\}$

$\Rightarrow n\in \left\{0; 4\right\}$

AH
Akai Haruma
Giáo viên
18 tháng 7 2024

2.

Nếu $n$ chẵn $\Rightarrow n+6$ chẵn.

$\Rightarrow (n+3)(n+6)$ chẵn $\Rightarrow (n+3)(n+6)\vdots 2$

Nếu $n$ lẻ $\Rightarrow n+3$ chẵn.

$\Rightarrow (n+3)(n+6)$ chẵn $\Rightarrow (n+3)(n+6)\vdots 2$