Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2.a)n^5+1⋮n^3+1
⇒n^2.(n^3+1)-n^2+1⋮n^3+1
⇒1⋮n^3+1
⇒n^3+1ϵƯ(1)={1}
ta có :n^3+1=1
n^3=0
n=0
Vậy n=0
b)n^5+1⋮n^3+1
Vẫn làm y như bài trên nhưng vì nϵZ⇒n=0
Bữa sau giải bài 3 mình buồn ngủ quá!!!!!!!!
bài 1
a, \(A=\frac{3}{x-1}\)
Để A thuộc Z suy ra 3 phải chia hết cho x-1
Suy ra x-1 thuộc ước của 3
Suy ra x-1 thuộc tập hợp -3;-1;1;3
Suy ra x tuộc tập hợp -2;0;2;4
"nếu ko thích thì lập bảng" mấy ccaau kia tương tự
\(a,\)\(1,\)\(A=\frac{3}{x-1}\)
\(A\in Z\Leftrightarrow\frac{3}{x-1}\in Z\)\(\Rightarrow3\)\(⋮\)\(x-1\)
\(\Leftrightarrow x-1\inƯ_3\)
Mà \(Ư_3=\left\{1;3;-1;-3\right\}\)
\(...........\)
\(2,\)\(B=\frac{x-2}{x+3}\)
\(B\in Z\Leftrightarrow\frac{x-2}{x+3}\in Z\)\(\Rightarrow\frac{x+3-5}{x+3}\in Z\)\(\Rightarrow1-\frac{5}{x+3}\in Z\)
\(\Leftrightarrow\frac{5}{x+3}\in Z\)\(\Rightarrow5\)\(⋮\)\(x+3\)
Mà \(Ư_5=\left\{1;5;-1;-5\right\}\)
\(.....\)
\(3,\)\(C=\frac{x^2-1}{x+1}=\frac{\left(x-1\right)\left(x+1\right)}{x+1}=x-1\)
\(C\in Z\Leftrightarrow x-1\in Z\)
\(\Rightarrow x\in Z\)
#)Giải :
1) \(\frac{n+7}{n+3}=\frac{n+3+4}{n+3}=\frac{n+3}{n+3}+\frac{4}{n+3}=1+\frac{4}{n+3}\)
\(\Rightarrow n+3\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
Lập bảng xét các Ư(4) rồi chọn ra các gt thỏa mãn
a) Ta có: n + 7 = (n + 3) + 4
Do n + 3 \(⋮\)n + 3 => 4 \(⋮\)n + 3
=> n + 3 \(\in\)Ư(4) = {1; -1; 2; -2; 4; -4}
Lập bảng :
n + 3 | 1 | -1 | 2 | -2 | 4 | -4 |
n | -2 | -4 | -1 | -5 | 1 | -7 |
Vậy ...
b) Ta có: 2n + 5 = 2(n + 3) - 1
Do 2(n + 3) \(⋮\)n + 3 => 1 \(⋮\)n + 3
=> n + 3 \(\in\)Ư(1) = {1; -1}
Với: n + 3 = 1 => n = 1 - 3 = -2
n + 3 = -1 => n= -1 - 3 = -4
Vậy ...
a, =>(n+3)-5n+5 chia hết cho n+3
=> 5n+5 chia hết cho n+3
=>5(n+3)-10 chia hết cho n+3
=>10 chia hết cho n+3
=>n+3 thuộc ước của 10
sau đó bạn tự kẻ bảng nhé
Mik chỉ làm đc con a thui sorry nhé