K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 9 2020

cảm ơn ông vì thời gian qua đã giúp tui nhiều bài tập :33

NV
5 tháng 8 2020

7.

Hình vuông có diện tích bằng 4 nên độ dài cạnh bằng \(\sqrt{4}=2\)

\(\Rightarrow\left\{{}\begin{matrix}R=\frac{2}{2}=1\\h=2\end{matrix}\right.\)

Thể tích trụ: \(V=\pi R^2h=2\pi\)

8.

Gọi M là trung điểm BC \(\Rightarrow AM\perp BC\) (trung tuyến đồng thời là đường cao trong tam giác đều)

\(SA\perp\left(ABC\right)\Rightarrow SA\perp BC\)

\(\Rightarrow BC\perp\left(SAM\right)\)

Mà BC là giao tuyến của (SBC) và (ABC)

\(\Rightarrow\widehat{SMA}\) là góc giữa (SBC) và (ABC)

\(AM=\frac{a\sqrt{3}}{2}\) (độ dài trung tuyến tam giác đều)

\(\Rightarrow tan\widehat{SMA}=\frac{SA}{AM}=\frac{2\sqrt{3}}{3}\)

20 tháng 5 2017

Khối đa diện

Khối đa diện

10 tháng 7 2016

Đáy ABC vuông cân tại B thì ACB=BAC=45\(^0\)chứ bạn. 

Bạn có gõ nhầm đề không?

2 tháng 4 2016

A B H C C' A' B'

Gọi H là trung điểm của cạnh BC. Suy ra :

\(\begin{cases}A'H\perp\left(ABC\right)\\AH=\frac{1}{2}BC=\frac{1}{2}\sqrt{a^2+3a^2}=a\end{cases}\)

Do đó : \(A'H^2=A'A^2-AH^2=3a^2=3a^2\Rightarrow A'H=a\sqrt{3}\)

Vậ \(V_{A'ABC}=\frac{1}{3}A'H.S_{\Delta ABC}=\frac{a^2}{2}\)

Trong tam giác vuông A'B'H ta có :

\(HB'=\sqrt{A'B'^2+A'H^2}=2a\) nên tam giác B'BH cân tại B'

Đặt \(\varphi\) là góc giữa 2 đường thẳng AA' và B'C' thì \(\varphi=\widehat{B'BH}\)

Vậy \(\cos\varphi=\frac{a}{2.2a}=\frac{1}{4}\)

22 tháng 9 2016

tại sao tam giác A'B'H lại vuông tại A' ạ??

2 tháng 4 2016

A B C B' C' A' E M

Từ giả thiết ta suy ra tam giác ABC là tam giác vuông cân tại B

Thể tích của khối lăng trụ là \(V_{ABC.A'B'C'}=AA'.BC=a\sqrt{2.}\frac{1}{2}a^2=\frac{\sqrt{2}}{2}a^3\)

Gọi E là trung điểm của BB'. Khi đó mặt phẳng (AME) song song với B'C nên khoảng cách giữa 2 đường thẳng AM, B'C bằng khoảng cách giữa B'C và mặt phẳng (AME)

Nhận thấy, khoảng cách từ B đến mặt phẳng (AME) bằng khoảng cách từ C đến mặt phẳng (AME)

Gọi h là khoảng cách từ B đến mặt phẳng (AME). Do đó tứ diện BAME có BA, BM, BE đôi một vuông góc với nhau nên :

\(\frac{1}{h^2}=\frac{1}{BA^2}+\frac{1}{BM^2}+\frac{1}{BE^2}\Rightarrow\frac{1}{h^2}=\frac{1}{a^2}+\frac{4}{a^2}+\frac{2}{a^2}=\frac{7}{a^2}\)

\(\Rightarrow h=\frac{a\sqrt{7}}{7}\)

Vậy khoảng cách giữa 2 đường thẳng B'C và AM bằng \(\frac{a\sqrt{7}}{7}\)

23 tháng 5 2017

Ôn tập cuối năm môn hình học 12