Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
P= (x2 - 4x)- (3x2 - 4 + 5x)
P= x2 -4x - 3x2 +4- 5x
P= (x2 -3x2)+ (-4x-5x)+ 4
P= -2-9+4
a: \(P=x^2-4x-3x^2+4-5x=-2x^2-9x+4\)
b: \(Q=-12y^5+y^4-1+14y^2+6y^3-3\)
\(=-12y^5+y^4+6y^3+14y^2-4\)
\(P+3x^2+5x-4=x^2-4x\)
\(\Leftrightarrow P=x^2-4x-3x^2-5x+4\)
\(\Leftrightarrow P=-2x^2-9x+4\)
\(Q-14y^4+6y^5-3=-12y^5+y^4-1\)
=>\(Q=-12y^5+y^4-1+14y^4-6y^5+3\)
\(\Leftrightarrow Q=-18y^5+15y^4+2\)
\(A\left(x\right)=8-5x+3x^2-15-3x+16=3x^2-8x+9\)
\(B\left(x\right)=5x-2x^2+4x-1-x^2-3x=-3x^2+6x-1\)
\(C\left(x\right)=B\left(x\right)-A\left(x\right)=\left(-3x^2+6x-1\right)-\left(3x^2-8x+9\right)\)
\(C\left(x\right)=-6x^2+14x-10\)
a,
*\(P\left(x\right)\) = \(-3x^2+4x-x^3+x^2+3x-1\)
\(P(x)=-3x^2+7x-x^3-1\)
\(P(x)=-x^3-3x^2+7x-1\)
* \(Q(x)=3x^4-x^2+x^3-2x-1-2x^3\)
\(Q(x)=3x^4-x^2-x^3-2x-1\)
\(Q(x)=3x^4-x^3-x^2-1\)
b, \(M(x)=P(x)-Q(x)\)
\(M(x)=-x^3-3x^2+7x-1-3x^4+x^3+x^2+1\)
\(M(x)=-2x^2+7x-3x^4\)
Câu 1
a. Ta có:
A(x) = 5x3 - 3x2 - 2 + 5x - 7x4 + 2x
= -7x4 + 5x3 - 3x2 + 7x - 2
B(x) = -5x3 + 7x4 + 3x2 - 3x + 4
=7x4 - 5x3 + 3x2 - 3x + 4
b. Ta có
A(x) + B(x) = 4x + 2
A(x) - B(x) = -14x4 + 10x3 - 6x2 + 10x - 6
c. Ta có: C(x) = A(x) + B(x) = 4x + 2 = 0
⇔4x = -2 ⇔x = -1/2
d. Thay x = 1 vào biểu thức D(x) ta có
D(1)= -14 + 10 - 6 + 10 - 6 = -6
Câu 2
Vì đa thức P(m) = mx2 - 1 có nghiệm là 3 nên ta có
m.32 - 1 = 0 ⇒ 3m = 1 ⇒ m = 1/3
Ta có: đa thức: \(C\left(x\right)=3x^2+12\)
Mà \(3x^2\ge0\)
Do đó: \(3x^2+12\ge12>0\)
Do đó da thức trên vô nghiệm