Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=2^2016+3^2017
A=2^(4.504)+3^(4.504+1)
A=2^(4.504)+3^(4.504)+3^1
A= (...6)+(...1)+(...3)
A= (...0)
vậy chữ số tận cùng cua A là 0
bạn ơi (...3) đọc là chữ số tận cùng của 3
mình chắc chắn 100% là đúng. bài nay bạn học toán nâng cao lớp 6 dạng tìm 1 chữ số tận cùng là biết.
Xét
2 có tận cùng là 2
2 . 12 có tận cùng bằng 4
2 . 12 . 22 có tận cùng là 8
2 . 12 . 22 . 32 có tận cùng là 6
2 . 12 . 22 . 32 . 42 có tận cùng là 2
..........
Dãy trên có số số hạng là :
( 2012 - 2 ) : 10 + 1 = 202 ( số )
Có 202 : 4 = 50 dư 2
vậy số tận cùng là 4
\(A=5+5^2+5^3+5^4+...+5^{2004}\)
\(5A=5^2+5^3+5^4+5^5+...+5^{2005}\)
\(5A-A=\left(5^2+5^3+5^4+5^5+...+5^{2005}\right)-\left(5+5^2+5^3+5^4+...+5^{2004}\right)\)
\(4A=5^{2005}-5\)
\(A=\dfrac{5^{2005}-5}{4}\)
\(B=7^1+7^2+7^3+....+7^{2015}\)
\(7B=7^2+7^3+7^4+....+7^{2016}\)
\(7B-B=\left(7^2+7^3+7^4+...+7^{2016}\right)-\left(7+7^2+7^3+....+7^{2015}\right)\)
\(6B=7^{2016}-7\)
\(B=\dfrac{7^{2016}-7}{6}\)
\(C=4^5+4^6+4^7+...+4^{2016}\)
\(4C=4^6+4^7+4^8+...+4^{2017}\)
\(4C-C=\left(4^6+4^7+4^8+...+4^{2017}\right)-\left(4^5+4^6+4^7+...+4^{2016}\right)\)
\(3C=4^{2017}-4^5\)
\(C=\dfrac{4^{2017}-4^5}{3}\)
A = 5 + 52 + 53 + 54 + ... + 52004
5A = 52 + 53 + 54 + 55 + ... + 52005
5A - A = 52005 - 5
4A = 52005 - 5
A = (52005 - 5) : 4
B = 71 + 72 + 73 + ... + 72015
7B = 72 + 73 + 74 + ... + 72016
7B - B = 72016 - 7
6B = 72016 - 7
B = (72016 - 7) : 6
C = 45 + 46 + 47 + ... + 42016
4C = 46 + 47 + 48 + ... + 42017
4C - C = 42017 - 45
3C = 42017 - 45
C = (42017 - 45) : 3
1)Ta có:\(2^{60}=\left(2^3\right)^{20}=8^{20}\)
\(3^{40}=\left(3^2\right)^{20}=9^{20}\)
Vì \(8^{20}< 9^{20}\Rightarrow2^{60}< 3^{40}\)
2)Gọi d là ƯCLN(n+3,2n+5)(d\(\in N\)*)
Ta có:\(n+3⋮d,2n+5⋮d\)
\(\Rightarrow2n+6⋮d,2n+5⋮d\)
\(\Rightarrow\left(2n+6\right)-\left(2n+5\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
Vì ƯCLN(n+3,2n+5)=1\(\RightarrowƯC\left(n+3,2n+5\right)=\left\{1,-1\right\}\)
3)\(A=5+5^2+5^3+5^4+...+5^{98}+5^{99}\)(có 99 số hạng)
\(A=\left(5+5^2+5^3\right)+\left(5^4+5^5+5^6\right)+...+\left(5^{97}+5^{98}+5^{99}\right)\)(có 33 nhóm)
\(A=5\left(1+5+5^2\right)+5^4\left(1+5+5^2\right)+...+5^{97}\left(1+5+5^2\right)\)
\(A=5\cdot31+5^4\cdot31+...+5^{97}\cdot31\)
\(A=31\left(5+5^4+...+5^{97}\right)⋮31\left(đpcm\right)\)
6)Đặt \(A=2^1+2^2+2^3+...+2^{100}\)
\(2A=2^2+2^3+2^4+...+2^{101}\)
\(2A-A=\left(2^2+2^3+2^4+...+2^{101}\right)-\left(2^1+2^2+2^3+...+2^{100}\right)\)
\(A=2^{101}-2\)
\(\Rightarrow2^1+2^2+2^3+...+2^{100}-2^{101}=2^{101}-2-2^{101}=-2\)
a) 90 = 1; 91 = 9; 92 = 81; 93 = 729; ...
mà 2015 lẻ nên tận cùng của 92015 là 9
b) A = 5 + 52 + 53 + 54 + ... + 52004
5A = 52 + 53 + 54 + 55 + ... + 52005
5A - A = (52 + 53 + 54 + 55 + ... + 52005) - (5 + 52 + 53 + 54 + ... + 52004)
4A = 52005 - 5
A = \(\frac{5^{2005}-5}{4}\)
Bài 2 :
A = 5 + 52 + 53 + ... + 52004
5A = 52 + 53 + 54 + ... + 52005
5A - A = 52005 - 5
4A = 52005 - 5
A = \(\frac{5^{2005}-5}{4}\)