K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 10 2017

a)\(\left(x-\frac{1}{2}\right)^{2016},\left|\frac{3}{4}-y\right|\ge0\)

\(\left(x-\frac{1}{2}\right)^{2016}+\left|\frac{3}{4}-y\right|=0\)

\(\Rightarrow\orbr{\begin{cases}\left(x-\frac{1}{2}\right)^{2016}=0\\\left|\frac{3}{4}-y\right|=0\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x-\frac{1}{2}=0\\\frac{3}{4}-y=0\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=\frac{1}{2}\\y=\frac{3}{4}\end{cases}}\)

b)\(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}\)

\(\Rightarrow\frac{b+c}{a}=\frac{a+c}{b}=\frac{a+b}{c}\)

\(\Rightarrow\frac{b+c}{a}-\frac{a+c}{b}-\frac{a+b}{c}=0\)

9 tháng 11 2021
a, (3x-1)^6 = (3x-1)^4 => (3x-1)^4.(3x-1)^2-(3x-1)^4.1=0 => (3x-1)^4.[(3x-1)^2-1]=0 => (3x-1)^4=0 hoặc (3x-1)^2-1=0 + Nếu (3x-1)^4=0 => 3x-1=0 => 3x=1 => x=1/3 + Nếu (3x-1)^2-1=0 => (3x-1)^2=1 => 3x-1=-1 hoặc 3x-1=1 => 3x=0 hoặc 3x=2 => x=0 hoặc x=2/3 Vậy x€{1/3;0;2/3}
9 tháng 11 2021

a/ \(\left(3x-1\right)^6=\left(3x-1\right)^4\Rightarrow\left(3x-1\right)=\left\{-1;0;1\right\}\)

\(\Rightarrow x=\left\{0;\frac{1}{3};\frac{2}{3}\right\}\)

b/

\(\frac{a+b-c}{c}=\frac{a-b+c}{b}=\frac{-a+b+c}{a}=\frac{a+b-c+a-b+c-a+b+c}{a+b+c}=1\)

\(\Rightarrow\frac{a+b-c}{c}=1\Rightarrow a+b=2c\)

Tương tự

\(b+c=2a;a+c=2b\)

\(\Rightarrow M=\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}=\frac{2c.2a.2b}{abc}=8\)

8 tháng 2 2016

28/29=0,96551.......

mà a, b , c là số tự nhiên nên mình thử ra là 1/2+1/3+1/7 là nhỏ nhất

Tổng nhỏ nhất là 2+3+7=12

8 tháng 2 2016

Mình thử đi thử lại rồi đúng

chonj số a,b,c nhỏ nhất là 2 trở lên thì

1/2+1/3+1/4 ko

1/2+1/3+1/5 ko

1/2+1/3+1/6 ko

1/2+1/3+1/7 chọn

 

11 tháng 4 2019

+ TH1 : \(a+b+c=0\Rightarrow\frac{a+b+c}{2}=0\)

\(\Rightarrow\hept{\begin{cases}a+b-2=0\\b+c+1=0\\c+a+1=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}a+b+c=c+2=0\\a+b+c=a-1=0\\a+b+c=b-1=0\end{cases}}\)\

\(\Rightarrow\hept{\begin{cases}a=1\\b=1\\c=-2\end{cases}}\left(TM\right)\)

+ TH2 : \(a+b+c\ne0\)

\(\frac{a+b-2}{c}=\frac{b+c+1}{a}=\frac{c+a+1}{b}\)\(=\frac{2\left(a+b+c\right)}{a+b+c}=2\) ( Theo tính chất dãy tỉ số bằng nhau )

\(\Rightarrow\hept{\begin{cases}a+b-2=2c\\b+c+1=2a\\c+a+1=2b\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}a+b+c=3c+2\\a+b+c=3a-1\\a+b+c=3b-1\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}3c+2=4\\3a-1=4\\3b-1=4\end{cases}}\) \(\left(do\frac{a+b+c}{2}=2\Rightarrow a+b+c=4\right)\)

\(\Rightarrow\hept{\begin{cases}a=b=\frac{5}{3}\\c=\frac{2}{3}\end{cases}\left(TM\right)}\)

Vậy \(\hept{\begin{cases}a=b=1\\c=-2\end{cases}}\) hoặc    \(\hept{\begin{cases}a=b=\frac{5}{3}\\c=\frac{2}{3}\end{cases}}\)

13 tháng 9 2019

đề sai

22 tháng 11 2018

bn có lời giải chưa

1.Cho dãy tỉ số bằng nhau: \(\frac{2016a++c+d}{c}\) =\(\frac{a+2016b+c+d}{b}\)=\(\frac{a+b+2016c+d}{c}\)=\(\frac{a+b+c+2016d}{d}\). Tính giá trị biểu thức M=\(\frac{a+b}{c+d}+\frac{b+c}{d+a}\)+\(\frac{c+d}{a+b}+\frac{d+a}{b+c}\)  2. a, Tìm tất cả các giá trị của x thỏa mãn :|x+2013|+\(\left(3y-7\right)^{2014}\le\) 0b,Tìm tất cả các giá trị của x biết : \(7^{2x}+7^{2x+3}\)=344c, Tìm 3 số x,y,z...
Đọc tiếp

1.Cho dãy tỉ số bằng nhau: \(\frac{2016a++c+d}{c}\) =\(\frac{a+2016b+c+d}{b}\)=\(\frac{a+b+2016c+d}{c}\)=\(\frac{a+b+c+2016d}{d}\). Tính giá trị biểu thức M=\(\frac{a+b}{c+d}+\frac{b+c}{d+a}\)+\(\frac{c+d}{a+b}+\frac{d+a}{b+c}\)  

2. a, Tìm tất cả các giá trị của x thỏa mãn :|x+2013|+\(\left(3y-7\right)^{2014}\le\) 0

b,Tìm tất cả các giá trị của x biết : \(7^{2x}+7^{2x+3}\)=344

c, Tìm 3 số x,y,z biết \(\frac{7}{2x+2}\)=\(\frac{3}{2y-4}\)=\(\frac{5}{x+4}\) và x+y+z=17

3.a, Cho tỉ lệ thức \(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}\) .CMR: c=0 hoặc b=0

b,Cho x,y là các số nguyên tố dương sao cho A=\(\frac{x^4+y^4}{15}\) cũng là số nguyên dương . CMR ; x,y đều chia hết cho 3 và 5. Từ đó tìm ra giá trị nhỏ nhất của A

c, cho các số a,b,c đôi một khác nhau và khác 0, thỏa mãn \(\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}\) . hãy tìm giá trị biểu thức : P=\(\left(1+\frac{c}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)\)

2
19 tháng 12 2019

1) Ta có : \(\frac{2016a+b+c+d}{a}=\frac{a+2016b+c+d}{b}=\frac{a+b+2016c+d}{c}=\frac{a+b+c+2016d}{d}\)

Trừ 4 vế với 2015 ta được : \(\frac{a+b+c+d}{a}=\frac{a+b+c+d}{b}=\frac{a+b+c+d}{c}=\frac{a+b+c+d}{d}\)

Nếu a + b + c + d = 0

=> a + b = -(c + d)

=> b + c = (-a + d) 

=> c + d = -(a + b)

=> d + a = (-b + c)

Khi đó M = (-1) + (-1) + (-1) + (-1) = - 4

Nếu a + b + c + d\(\ne0\Rightarrow\frac{1}{a}=\frac{1}{b}=\frac{1}{c}=\frac{1}{d}\Rightarrow a=b=c=d\)

Khi đó M = 1 + 1 + 1 + 1 = 4

2) a) Ta có : \(\hept{\begin{cases}\left|x+2013\right|\ge0\forall x\\\left(3x-7\right)^{2004}\ge0\forall y\end{cases}\Rightarrow\left|x+2013\right|+\left(3x-7\right)^{2014}\ge0}\)

Dấu "=" xảy ra \(\hept{\begin{cases}x+2013=0\\3y-7=0\end{cases}\Rightarrow\hept{\begin{cases}x=-2013\\y=\frac{7}{3}\end{cases}}}\)

b) 72x + 72x + 3 = 344

=> 72x + 72x.73 = 344

=> 72x.(1 + 73) = 344

=> 72x  = 1

=> 72x = 70

=> 2x = 0 => x = 0

c) Ta có :

 \(\frac{7}{2x+2}=\frac{3}{2y-4}=\frac{5}{x+4}\Leftrightarrow\frac{7}{2x+2}=\frac{3}{2y-4}=\frac{10}{2x+8}=\frac{7-10}{2x+2-2x-8}=\frac{1}{2}\)(dãy tỉ số bằng nhau)

=>  2x + 2 = 14 => x = 6 ; 

2y - 4 = 6 => y = 5 ; 

6 + 5 + z = 17 => z = 6 

Vậy x = 6 ; y = 5 ; z = 6

3) a) Ta có : \(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}=\frac{a+b+c-a+b-c}{a+b-c-a+b+c}=\frac{2b}{2b}=1\)(dãy ti số bằng nhau) 

=> a + b + c = a + b - c => a + b + c - a - b + c = 0 => 2c = 0 => c = 0;  

Lại có : \(\frac{a+b+c}{a+b-c}-1=\frac{a-b+c}{a-b-c}-1\Leftrightarrow\frac{2c}{a+b-c}=\frac{2c}{a-b-c}\Rightarrow a+b-c=a-b-c\) => b = 0 

Vậy c = 0 hoặc b = 0

c) Ta có : \(\frac{a+b}{c}=\frac{b+c}{a}=\frac{a+c}{b}=\frac{a+b+b+c+a+c}{c+a+b}=2\)(dãy tỉ số bằng nhau) 

=> \(\hept{\begin{cases}a+b=2c\\b+c=2a\\a+c=2b\end{cases}}\)

Khi đó P = \(\left(1+\frac{c}{b}\right)\left(1+\frac{a}{c}\right)\left(1+\frac{b}{a}\right)=\frac{b+c}{b}.\frac{c+a}{c}=\frac{a+b}{a}=\frac{2a.2b.2c}{abc}=8\)

Vậy P = 8

9 tháng 1 2020

2. b) \(7^{2x}+7^{2x+3}=344\)

        \(7^{2x}\cdot\left(1+7^3\right)=344\)

        \(7^{2x}\cdot\left(1+343\right)=344\)

        \(7^{2x}\cdot344=344\)

               \(7^{2x}=1\)  

               \(7^{2x}=7^0\)

              \(2x=0\)

               \(x=0\)

10 tháng 8 2019

Ta có : \(\hept{\begin{cases}\frac{a}{a'}+\frac{b'}{b}=1\Rightarrow ab+a'b'=a'b\Rightarrow abc+a'b'c=a'bc\left(1\right)\\\frac{b}{b'}=\frac{c'}{c}\Rightarrow bc+b'c'=b'c\Rightarrow a'bc+a'b'c'=a'b'c\left(2\right)\end{cases}}\)

Từ (1) và (2) ta có đpcm