Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{2002\left(x-1\right)+2003}{2003\left(x-1\right)}=\frac{2002}{2003}+\frac{1}{x-1}\)
=> x-1 phải là sô nguyên dương nhỏ nhất => x-1=1=> x=2
\(A=\)\(\frac{2002\left(x-1\right)+2003}{2003\left(x-1\right)}\)\(=\)\(\frac{2002}{2003}\)\(+\)\(\frac{1}{x-1}\)
=> x-1 phải là số nguyên dương nhỏ nhất
=>x-1=1
=>x=2
\(A=\frac{2002x+1}{2003x-2003}\)
\(A=\frac{2002x+1}{2003.\left(x-1\right)}\)
\(A=\frac{2002.\left(x-1\right)+2003}{2003.\left(x-1\right)}\)
\(A=\frac{2002}{2003}+\frac{1}{x-1}.\)
Để A đạt GTLN \(\Leftrightarrow\frac{1}{x-1}\) đạt GTLN.
Nếu \(x>1\) thì:
\(x-1>0\)
\(\Rightarrow\frac{1}{x-1}>0.\)
Nếu \(x< 1\) thì:
\(x-1< 0\)
\(\Rightarrow\frac{1}{x-1}< 0.\)
Xét \(x>1\) ta có:
\(\frac{1}{x-1}\) đạt GTLN.
\(\Rightarrow x-1\) là số nguyên dương nhỏ nhất.
\(\Rightarrow x-1=1\)
\(\Rightarrow x=1+1\)
\(\Rightarrow x=2\left(TM\right).\)
Vậy \(MAX_A=1\frac{2002}{2003}\) khi \(x=2.\)
Chúc bạn học tốt!
Để A đạt GTLN thì \(\frac{3}{4-x}\)phải đạt giá trị lớn nhất\(\Rightarrow\)4-x phải bé nhất và 4-x>0
\(\Rightarrow4-x=1\rightarrow x=3\)
thay vào ta đc A=3
B3
\(B=\frac{7-x}{4-x}=\frac{4-x+3}{4-x}=\frac{4-x}{4-x}+\frac{3}{4-x}\)\(=1+\frac{3}{4-x}\)
Để b đạt GTLn thì 3/4-x phải lớn nhất (làm tương tụ như bài 2 )
Vậy gtln của 3/4-x là 3 thay vào ta đc b=4
Lâm như bài 2 Gtln của\(\frac{3}{4-x}\)
B1\(\frac{4x-3}{2x+1}=\frac{4x+2-5}{2x+1}=\frac{2.\left(2x+1\right)-5}{2x+1}\)\(=\frac{2.\left(2x+1\right)}{2x+1}-\frac{5}{2x+1}=2-\frac{5}{2x+1}\)
VÌ A\(\varepsilon Z\),2\(\varepsilon Z\)\(\Rightarrow\)\(\frac{5}{2x+1}\varepsilon Z\)\(\rightarrow2x+1\varepsilonƯ\left(5\right)\)={1;-1;5;-5}
\(\Rightarrow\)x={0;-1;23}
bài 2
Ta có:
\(A=\left|x-102\right|+\left|2-x\right|\Rightarrow A\ge\left|x-102+2-x\right|=-100\Rightarrow GTNNcủaAlà-100\)đạt được khi \(\left|x-102\right|.\left|2-x\right|=0\)
Trường hợp 1: \(x-102>0\Rightarrow x>102\)
\(2-x>0\Rightarrow x< 2\)
\(\Rightarrow102< x< 2\left(loại\right)\)
Trường hợp 2:\(x-102< 0\Rightarrow x< 102\)
\(2-x< 0\Rightarrow x>2\)
\(\Rightarrow2< x< 102\left(nhận\right)\)
Vậy GTNN của A là -100 đạt được khi 2<x<102.
2) Ta có: \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}\)
Áp dụng t/c của dãy TSBN ta có:
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\left(a,b,c\ne0\right)\)
Suy ra : a=1.b=b
b= 1.c=c
c= 1.a=a
Do đó: a=b=c
\(\Rightarrow\frac{a^3.b^2.c^{1930}}{b^{1935}}=\frac{b^3.b^2.b^{1930}}{b^{1935}}=\frac{b^{1935}}{b^{1935}}=1\)
A nhỏ nhất khi \(\frac{3}{x-1}\) nhỏ nhất
=> x - 1 lớn nhất
=> x là số dương vô cùng đề sai nhá
Lời giải:
a. Tại $x=\frac{1}{2}=0,5$ thì $A=\frac{2014-0,5}{2015-0,5}=\frac{4027}{4029}$
Tại $x=\frac{-1}{2}=-0,5$ thì $A=\frac{2014+0,5}{2015+0,5}=\frac{4029}{4031}$
b. $A=\frac{2015-x-1}{2015-x}=1-\frac{1}{2015-x}=1+\frac{1}{x-2015}$
Để $A$ max thì $\frac{1}{x-2015}$ max
$\Rightarrow x-2015 là số nguyên dương nhỏ nhất
$\Rightarrow x-2015=1$
$\Rightarrow x=2016$
ai trả lời nhanh cái h mình cần gấp làm xong mình k nha><