K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 3 2020

1, a,\(\left(-7x^2\right)\left(3x^2-x-2\right)\)

\(=-21x^4+7x^3+14x^2\)

\(b,\left(2x^3-3x^2-10x+3\right):\left(x-3\right)\)

2x^3-3x^2-10x+3 x-3 2x^2+3x-1 2x^3-6x^2 - 3x^2-10x+3 3x^2-9x - -x+3 -x+3 - 0

2,\(a,\left(x-3\right)\left(x^2+1\right)-\left(x-3\right)\left(x^2+3x+9\right)\)

\(=x^3+x-3x^2-3-x^3+27\)

\(=-3x^2+x+24\)

\(b,\left(2x+1\right)^2+\left(2x-1\right)^2+2\left(4x^2-1\right)\)

\(=4x^2+4x+1+4x^2-4x+1+8x^2-2\)

\(=24x^2\)

\(3,a,x^3-x^2-x+1\)

\(=x^2\left(x-1\right)-\left(x-1\right)\)

\(=\left(x-1\right)^2\left(x+1\right)\)

\(b,3x^2-7x-10\)

\(=3x^2+3x-10x-10\)

\(=3x\left(x+1\right)-10\left(x+1\right)\)

\(=\left(x+1\right)\left(3x-10\right)\)

4, a. Bn kiểm tra lại đề bài nhé

b,\(4x^2-12xy+10y^2\)

\(=\left(4x^2-12xy+9y^2\right)+y^2\)

\(=\left(2x-3y\right)^2+y^2\ge0\forall x,y\)

3 tháng 2 2019

đa phần mình sử dụng phương pháp liên hợp nha bạn

\(\sqrt{a}-\sqrt{b}=\dfrac{a-b}{\sqrt{a}+\sqrt{b}}\)

b. điều kiện \(\dfrac{1}{4}\le x\le\dfrac{3}{8}\), pt:

\(\Leftrightarrow\sqrt{3-8x}-\sqrt{4x-1}=6x-2\\ \Leftrightarrow\dfrac{3-8x-4x+1}{\sqrt{3-8x}+\sqrt{4x-1}}=2\left(3x-1\right)\\ \Leftrightarrow\dfrac{-4\left(3x-1\right)}{\sqrt{3-8x}+\sqrt{4x-1}}=2\left(3x-1\right)\\ \Leftrightarrow2\left(3x-1\right)+\dfrac{4\left(3x-1\right)}{\sqrt{3-8x}+\sqrt{4x-1}}=0\\ \Leftrightarrow2\left(3x-1\right)\left(1+\dfrac{2}{\sqrt{3-8x}+\sqrt{4x-1}}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}\left(n\right)\\1+\dfrac{2}{\sqrt{3-8x}+\sqrt{4x-1}}=0\left(vn\right)\end{matrix}\right.\)

d. điều kiện: \(x\le-4\cup x\ge0\), pt:

\(\Leftrightarrow1-\sqrt{x^2-3x+3}=\sqrt{2x^2+x+2}-\sqrt{x^2+4x}\\ \Leftrightarrow\dfrac{1-x^2+3x-3}{1+\sqrt{x^2-3x+3}}=\dfrac{2x^2+x+2-x^2-4x}{\sqrt{2x^2+x+2}+\sqrt{x^2+4x}}\\ \Leftrightarrow\dfrac{-\left(x-1\right)\left(x-2\right)}{1+\sqrt{x^2-3x+3}}=\dfrac{\left(x-1\right)\left(x-2\right)}{\sqrt{2x^2+x+2}+\sqrt{x^2+4x}}\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\left(n\right)\\x=1\left(n\right)\\\dfrac{-1}{1+\sqrt{x^2-3x+3}}=\dfrac{1}{\sqrt{2x^2+x+2}+\sqrt{x^2+4x}}\left(vn\right)\end{matrix}\right.\)

e. điều kiện:x thuộc R

\(\Leftrightarrow\sqrt{x^2+15}-4=3x-3+\sqrt{x^2+8}-3\\ \Leftrightarrow\dfrac{x^2+15-16}{\sqrt{x^2+15}+4}=3\left(x-1\right)+\dfrac{x^2+8-9}{\sqrt{x^2+8}+3}\\ \Leftrightarrow\dfrac{\left(x-1\right)\left(x+1\right)}{\sqrt{x^2+15}+4}-3\left(x-1\right)-\dfrac{\left(x-1\right)\left(x+1\right)}{\sqrt{x^2+8}+3}=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\\dfrac{\left(x+1\right)}{\sqrt{x^2+15}+4}-3-\dfrac{\left(x+1\right)}{\sqrt{x^2+8}+3}=0\left(1\right)\end{matrix}\right.\)

(1) mình không biết có vô nghiệm không nữa và cũng thua luôn

f. điều kiện: \(x\ge-2\)

bài này giải cách hơi khác một chút

đặt \(a=\sqrt{x+5}\left(\ge0\right)\\ b=\sqrt{x+2}\left(\ge0\right)\)

pt:

\(\Leftrightarrow\left(\sqrt{x+5}-\sqrt{x+2}\right)\left[\left(1+\sqrt{\left(x+5\right)\left(x+2\right)}\right)\right]\\ \Rightarrow\left(a-b\right)\left(1+ab\right)=3\left(1\right)\)

\(a^2-b^2=x+5-x-2=3\\ \Rightarrow\left(a-b\right)\left(a+b\right)=3\left(2\right)\)

=> (1) = (2)

\(\Leftrightarrow\left(a-b\right)\left(1+ab\right)=\left(a-b\right)\left(a+b\right)\\ \Leftrightarrow\left(a-b\right)\left(1+ab-a-b\right)=0\\ \Leftrightarrow\left(a-b\right)\left(a-1\right)\left(b-1\right)=0\)

TH1: a=b \(\Leftrightarrow\sqrt{x+5}=\sqrt{x+2}\Leftrightarrow x+5=x+2\left(vn\right)\)

TH2: a=1\(\Leftrightarrow\sqrt{x+5}=1\Leftrightarrow x=-4\left(l\right)\)

TH3: b=1\(\Leftrightarrow\sqrt{x+2}=1\Leftrightarrow x=-1\left(n\right)\)

g. điều kiện: \(x\le-\sqrt{2}\cup x\ge\dfrac{7+\sqrt{37}}{2}\)

pt:

\(\dfrac{3x^2-7x+3-3x^2+5x+1}{\sqrt{3x^2-7x+2}+\sqrt{x^2-3x-4}}=\dfrac{x^2-2-x^2+3x-4}{\sqrt{3x^2-5x-1}+\sqrt{x^2-2}}\\ \Leftrightarrow\dfrac{-2\left(x-2\right)}{\sqrt{3x^2-7x+2}+\sqrt{x^2-3x-4}}=\dfrac{3\left(x-2\right)}{\sqrt{3x^2-5x-1}+\sqrt{x^2-2}}\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-2\left(n\right)\\\dfrac{-2}{\sqrt{3x^2-7x+2}+\sqrt{x^2-3x-4}}=\dfrac{3}{\sqrt{3x^2-5x-1}+\sqrt{x^2-2}}\left(vn\right)\end{matrix}\right.\)h. điều kiện \(x\le-2-\sqrt{7}\cup x\ge-2+\sqrt{7}\)

\(\sqrt{2x^2+x-1}-\sqrt{x^2+4x-3}=\sqrt{2x^2+4x-3}-\sqrt{3x^2+x-1}\\ \Leftrightarrow\dfrac{2x^2+x-1-x^2-4x+3}{\sqrt{2x^2+x-1}+\sqrt{x^2+4x-3}}=\dfrac{2x^2+4x-3-3x^2-x+1}{\sqrt{2x^2+4x-3}+\sqrt{3x^2+x-1}}\\ \Leftrightarrow\dfrac{x^2-3x+2}{\sqrt{2x^2+x-1}+\sqrt{x^2+4x-3}}=\dfrac{-\left(x^2-3x+2\right)}{\sqrt{2x^2+4x-3}+\sqrt{3x^2+x-1}}\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-3x+2=0\Leftrightarrow x=1\left(n\right),x=2\left(n\right)\\\dfrac{1}{\sqrt{2x^2+x-1}+\sqrt{x^2+4x-3}}=\dfrac{-1}{\sqrt{2x^2+4x-3}+\sqrt{3x^2+x-1}}\left(vn\right)\end{matrix}\right.\)

(nhớ tích cho mình nha, mấy bài kia mình ko biết làm huhu)

10 tháng 2 2019

thank bn

14 tháng 10 2017

a)

\(A=3\left(x-y\right)^2-2\left(x+y\right)^2-\left(x-y\right)\left(x+y\right)\)\(2A=\left[\left(x-y\right)-\left(x+y\right)\right]^2+5\left(x-y\right)^2-5\left(x+y\right)^2\)

\(2A=4y^2+5\left[\left(x-y\right)-\left(x+y\right)\right]\left[\left(x-y\right)+\left(x+y\right)\right]\)\(2A=4y^2+5\left[-2y\right]\left[2x\right]=4y^2-20xy=4y\left(y-5x\right)\\ \)\(A=2y\left(y-5x\right)\)

Bài 1:

a) \(5x-15y=5\left(x-3y\right)\)

b) \(\dfrac{3}{5}x^2+5x^4-x^2y=x^2\left(\dfrac{3}{5}+5x^2-y\right)\)

c) \(14x^2y^2-21xy^2+28x^2y=7xy\left(2xy-3y+4x\right)\)

d) \(\dfrac{2}{7}x\left(3y-1\right)-\dfrac{2}{7}y\left(3y-1\right)=\dfrac{2}{7}\left(3y-1\right)\left(x-y\right)\)

e) \(x^3-3x^2+3x-1=\left(x-1\right)^3\)

f) \(\left(x+y\right)^2-4x^2=\left(-x+y\right)\left(3x+y\right)\)

g) \(27x^3+\dfrac{1}{8}=\left(3x+\dfrac{1}{2}\right)\left(6x^2+1,5x+\dfrac{1}{4}\right)\)

h) \(\left(x+y\right)^3-\left(x-y\right)^3\)

\(=x^3+3x^2y+3xy^2+y^3-x^3+3x^2y-3xy^2+y^3\)

\(=6x^2y+2y^3=2y\left(3x^2+y\right)\)

Bài 2:

a) \(x^2\left(x+1\right)+2x\left(x+1\right)=0\)

\(\Rightarrow x\left(x+1\right)\left(x+2\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x+1=0\Rightarrow x=-1\\x+2=0\Rightarrow x=-2\end{matrix}\right.\)

b) \(x\left(3x-2\right)-5\left(2-3x\right)=0\)

\(\Rightarrow x\left(3x-2\right)+5\left(3x-2\right)=0\)

\(\Rightarrow\left(3x-2\right)\left(x+5\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}3x-2=0\Rightarrow x=\dfrac{2}{3}\\x+5=0\Rightarrow x=-5\end{matrix}\right.\)

c) \(\dfrac{4}{9}-25x^2=0\)

\(\Rightarrow\left(\dfrac{2}{3}-5x\right)\left(\dfrac{2}{3}+5x\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}\dfrac{2}{3}-5x=0\Rightarrow x=\dfrac{2}{15}\\\dfrac{2}{3}+5x=0\Rightarrow x=\dfrac{-2}{15}\end{matrix}\right.\)

d) Có tới 2 dấu "=".

28 tháng 9 2017

bài 1 dễ mk ko lm nữa nhé

bafi2:

a,x(x+1)(x+2)=0

x=0 ; x=-1 ; x=-2

b,x(3x-2)+5(3x-2)=0

(x+5)(3x-2)=0

x=-5 ; x=2/3

c,

(2/3)2- (5x)2=0

(2/3-5x)(2/3+5x)=0

x=+-2/15

d, X2-2*1/2x+(1/2)2=0

(X-1/2)22=0

X=1/2

4 tháng 8 2019

Bài 1

d, \(x^2+2xy+y^2-2x-2y+1\)

\(\Rightarrow x^2+y^2=1+2xy-2y-2x\)

\(\Rightarrow\left(x+y-1\right)^2\)

Bài 2:

a, \(\left(x+1\right)\left(x+1\right)=\left(x+2\right)\left(x+5\right)\)

\(\Leftrightarrow\left(x+1\right)^2=x^2+5x+2x+10\)

\(\Leftrightarrow x^2+2x+1=x^2=5x+2x+10\)

\(\Leftrightarrow-5x=9\)

\(\Leftrightarrow x=-\frac{9}{5}\)

b,\(\left(x+3\right)\left(x+5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\x+5=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=-5\end{matrix}\right.\)

c, \(4x^2-9=0\)

\(\Leftrightarrow4x^2=9\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{3}{2}\\\frac{3}{2}\end{matrix}\right.\)

d,\(\left(4x-5\right)^2-\left(3x-4\right)^2=0\)

\(\Leftrightarrow16x^2-40x+25-\left(9x^2-24x+16\right)=0\)

\(\Leftrightarrow16x^2-40x+25-9x^2+24x-16=0\)

\(\Leftrightarrow7x^2-16x+9=0\)

\(\Leftrightarrow x=\frac{-\left(-16\right)\pm\sqrt{\left(-16\right)^2-4.7.9}}{14}\)

\(\Leftrightarrow x=\frac{16\pm\sqrt{256-252}}{14}\)

\(\Leftrightarrow x=\frac{16\pm\sqrt{4}}{14}\)

\(\Leftrightarrow x=\frac{16\pm2}{14}\)

\(\Leftrightarrow x=\left[{}\begin{matrix}\frac{16+2}{14}\\\frac{16-2}{14}\end{matrix}\right.\)

\(\Leftrightarrow x=\left[{}\begin{matrix}\frac{9}{7}\\1\end{matrix}\right.\)

4 tháng 8 2019

1.a)\(3x-3y+x^2-2xy+y^2\)

\(=3\left(x-y\right)+\left(x-y\right)^2\)

\(=\left(x-y\right)\left(3+x-y\right)\)

d)\(x^2+2xy+y^2-2x-2y+1\)

\(=\left(x+y\right)^2-2\left(x+y\right)+1\)

\(=\left(x+y+1\right)^2\)

2.a)\(\left(x+1\right)\left(x+1\right)=\left(x+2\right)\left(x+5\right)\)

\(\Leftrightarrow\left(x+1\right)^2=x^2+5x+2x+10\)

\(\Leftrightarrow x^2+2x+1-x^2-7x-10=0\)

\(\Leftrightarrow-5x-9=0\)

\(\Leftrightarrow-5x=9\)

\(\Leftrightarrow x=-\frac{9}{5}\). Vậy \(S=\left\{-\frac{9}{5}\right\}\)

b)\(\left(x+3\right)\left(x+5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=-5\end{matrix}\right.\).Vậy \(S=\left\{-3;-5\right\}\)

c)\(4x^2-9=0\)

\(\Leftrightarrow\left(2x+3\right)\left(2x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+3=0\\2x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\frac{3}{2}\\x=\frac{3}{2}\end{matrix}\right.\). Vậy \(S=\left\{\pm\frac{3}{2}\right\}\)

d)\(\left(4x-5\right)^2-\left(3x-4\right)^2=0\)

\(\Leftrightarrow\left(4x-5+3x-4\right)\left(4x-5-3x+4\right)=0\)

\(\Leftrightarrow\left(7x-9\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}7x-9=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{9}{7}\\x=1\end{matrix}\right.\). Vậy \(S=\left\{1;\frac{9}{7}\right\}\)

3.Ta có:

8x^2-26x+m 2x-3 4x-7 -14x+m m+21

Để \(A\left(x\right)⋮B\left(x\right)\) thì: \(m+21⋮2x-3\)

\(\Rightarrow m+21=0\)

\(\Rightarrow m=-21\)

Vậy...!

15 tháng 11 2022

1: =>(x+2)^2-3|x+2|=0

=>|x+2|(|x+2|-3)=0

=>x+2=0 hoặc x+2=3 hoặc x+2=-3

=>x=-2; x=1; x=-5