K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
25 tháng 1 2021

Lời giải:Áp dụng định lý cos ta có:

\(\cos A=\frac{AB^2+AC^2-BC^2}{2AB.AC}=\frac{-1}{2}\Rightarrow \widehat{A}=120^0\)

\(\cos B=\frac{BC^2+BA^2-AC^2}{2BC.BA}=\frac{-\sqrt{2}}{2}\Rightarrow \widehat{B}=45^0\)

\(\widehat{C}=180^0-(\widehat{A}+\widehat{B})=180^0-(120^0+45^0)=15^0\)

\(\widehat{ADB}=180^0-(\frac{\widehat{A}}{2}+\widehat{B})=180^0-(\frac{120^0}{2}+45^0)=75^0\)

NV
20 tháng 4 2020

\(\overrightarrow{AB}=\left(2;4\right);\overrightarrow{AC}=\left(11;-2\right);\overrightarrow{BC}=\left(9;-6\right)\)

\(\Rightarrow AB=2\sqrt{5};AC=5\sqrt{5};BC=3\sqrt{13}\)

Gọi D là chân đường phân giác trong góc A trên BC

\(\frac{DB}{DC}=\frac{AB}{AC}=\frac{2}{5}\Rightarrow BD=\frac{2}{5}CD=\frac{2}{7}BC\Rightarrow\overrightarrow{BD}=\frac{2}{7}\left(9;-6\right)\)

\(\Rightarrow D\left(\frac{46}{7};\frac{44}{7}\right)\Rightarrow\overrightarrow{AD}=\left(\frac{32}{7};\frac{16}{7}\right)=\frac{16}{7}\left(2;1\right)\)

\(\Rightarrow\) Đường thẳng AD nhận \(\left(1;-2\right)\) là 1 vtpt

Phương trình AD:

\(1\left(x-2\right)-2\left(y-4\right)=0\Leftrightarrow x-2y+6=0\)

2.

Đường thẳng d có 1 vtpt là \(\left(1;3\right)\)

Gọi vtpt của d' là \(\left(a;b\right)\Rightarrow cos45^0=\frac{\left|a+3b\right|}{\sqrt{10\left(a^2+b^2\right)}}=\frac{1}{\sqrt{2}}\)

\(\Leftrightarrow a^2+6ab+9b^2=5a^2+5b^2\)

\(\Leftrightarrow4a^2-6ab-4b^2=0\Leftrightarrow\left(2a+b\right)\left(a-2b\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}b=-2a\\a=2b\end{matrix}\right.\)

Chọn \(a=2\Rightarrow\left[{}\begin{matrix}b=-4\\b=1\end{matrix}\right.\)

Có 2 đường thẳng thỏa mãn:

\(\left[{}\begin{matrix}1\left(x+2\right)-2\left(y-0\right)=0\\2\left(x+2\right)+1\left(y-0\right)=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x-2y+2=0\\2x+y+4=0\end{matrix}\right.\)

23 tháng 6 2017

$\sum \sqrt{\frac{ab+2c^2}{1+ab-c^2}}\geq ab+bc+ca+2$ - Bất đẳng thức và cực trị - Diễn đàn Toán học

24 tháng 6 2017

còn câu 1 nữa Ace Legona

AH
Akai Haruma
Giáo viên
2 tháng 12 2019

Lời giải:

Áp dụng BĐT Bunhiacopxky:

\((a+b\sqrt{3}+c\sqrt{5})^2\leq (a^2+b^2+c^2)(1+3+5)\)

\(\Leftrightarrow (a+b\sqrt{3}+c\sqrt{5})^2\leq 9\Rightarrow a+b\sqrt{3}+c\sqrt{5}\leq 3\)

(đpcm)

Dấu "=" xảy ra khi \(\frac{a}{1}=\frac{b}{\sqrt{3}}=\frac{c}{\sqrt{5}}\) hay \(a=\frac{1}{3}; b=\sqrt{\frac{1}{3}}; c=\sqrt{\frac{5}{9}}\)

AH
Akai Haruma
Giáo viên
8 tháng 6 2018

Bài 1:
Áp dụng BĐT Bunhiacopxky ta có:

\((a^2+2c^2)(1+2)\geq (a+2c)^2\)

\(\Rightarrow \sqrt{a^2+2c^2}\geq \frac{a+2c}{\sqrt{3}}\)

\(\Rightarrow \frac{\sqrt{a^2+2c^2}}{ac}\geq \frac{a+2c}{\sqrt{3}ac}=\frac{ab+2bc}{\sqrt{3}abc}\)

Hoàn toàn tương tự: \(\left\{\begin{matrix} \frac{\sqrt{c^2+2b^2}}{bc}\geq \frac{ac+2ab}{\sqrt{3}abc}\\ \frac{\sqrt{b^2+2a^2}}{ab}\geq \frac{bc+2ac}{\sqrt{3}abc}\end{matrix}\right.\)

Cộng theo vế các BĐT trên thu được:

\(\text{VT}\geq \frac{1}{\sqrt{3}}.\frac{ab+2bc+ac+2ab+bc+2ac}{abc}=\frac{1}{\sqrt{3}}.\frac{3(ab+bc+ac)}{abc}=\frac{1}{\sqrt{3}}.\frac{3abc}{abc}=\sqrt{3}\)

Ta có đpcm

Dấu bằng xảy ra khi $a=b=c=3$

AH
Akai Haruma
Giáo viên
8 tháng 6 2018

Bài 2: Bài này sử dụng pp xác định điểm rơi thôi.

Áp dụng BĐT AM-GM ta có:

\(24a^2+24.(\frac{31}{261})^2\geq 2\sqrt{24^2.(\frac{31}{261})^2a^2}=\frac{496}{87}a\)

\(b^2+(\frac{248}{87})^2\geq 2\sqrt{(\frac{248}{87})^2.b^2}=\frac{496}{87}b\)

\(93c^2+93.(\frac{8}{261})^2\geq 2\sqrt{93^2.(\frac{8}{261})^2c^2}=\frac{496}{87}c\)

Cộng theo vế:

\(B+\frac{248}{29}\geq \frac{496}{87}(a+b+c)=\frac{496}{87}.3=\frac{496}{29}\)

\(\Rightarrow B\geq \frac{496}{29}-\frac{248}{29}=\frac{248}{29}\)

Vậy \(B_{\min}=\frac{248}{29}\). Dấu bằng xảy ra khi: \((a,b,c)=(\frac{31}{261}; \frac{248}{87}; \frac{8}{261})\)

NV
19 tháng 2 2020

\(0< 15^0< 90^0\Rightarrow sin,cos,tan\) đều dương

\(cos15=\sqrt{1-sin^215}=\sqrt{1-\left(\frac{\sqrt{6}-\sqrt{2}}{4}\right)^2}=\frac{\sqrt{6}+\sqrt{2}}{4}\)

\(tan15=\frac{sin15}{cos15}=2+\sqrt{3}\)

\(cot15=\frac{1}{tan15}=2-\sqrt{3}\)

22 tháng 8 2022

sao cos bình 15 lại = căn 1- sin bình 15 ạ