Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,=25/6;7/6=25/6x6/7=25/7
b,=7/2x32/6=56/3
c,=17/5-11/10=34/10-11/10=23/10
d,=8/3+11/4=32/12+33/12=65/12
\(1\frac{1}{5};1\frac{1}{2};1\frac{3}{5};2\frac{1}{2};2\frac{2}{3}\)
\(\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}\right).100-\left[\frac{5}{2}:\left(x+\frac{266}{100}\right)\right]:\frac{1}{2}=89\)
\(\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{9}-\frac{1}{10}\right).100-\left[\frac{5}{2}:\left(x+\frac{266}{100}\right)\right]:\frac{1}{2}=89\)
\(\left(1-\frac{1}{10}\right).100-\left[\frac{5}{2}:\left(x+\frac{266}{100}\right)\right]:\frac{1}{2}=89\)
\(90-\left[\frac{5}{2}:\left(x+\frac{266}{100}\right)\right]:\frac{1}{2}=89\)
\(\left[\frac{5}{2}:\left(x+\frac{266}{100}\right)\right]:\frac{1}{2}=1\)
\(\frac{5}{2}:\left(x+\frac{266}{100}\right)=\frac{1}{2}\Rightarrow x+\frac{266}{100}=5\Rightarrow x=\frac{117}{50}\)
Vậy x = 117/50
Ta có:
\(\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{9.10}\right).100\\ =\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{9}-\frac{1}{10}\right).100\)
\(=\left(1-\frac{1}{10}\right).100\)
\(=\frac{9}{10}.100\)
= 90
Khi đó đề bài sẽ thành : \(90-\left[\frac{5}{2}:\left(x+\frac{266}{100}\right)\right]:\frac{1}{2}=89\)
\(\Rightarrow\left[\frac{5}{2}:\left(x+\frac{266}{100}\right)\right]:\frac{1}{2}=1\)
\(\Rightarrow\frac{5}{2}:\left(x+\frac{266}{100}\right)=\frac{1}{2}\)
\(\Rightarrow x+\frac{266}{100}=5\)
\(\Rightarrow x=\frac{117}{50}\)
Vậy \(x=\frac{117}{50}\)
\(\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+\frac{1}{1+2+3+4+5}\)
\(=\frac{1}{1+2}\times\left(1+\frac{1}{1+2+3}\div\frac{1}{1+2}+\frac{1}{1+2+3+4}\div\frac{1}{1+2}+\frac{1}{1+2+3+4+5}\div\frac{1}{1+2}\right)\)
\(=\frac{1}{1+2}\times\left(1+\frac{1}{2}+\frac{3}{10}+\frac{1}{5}\right)\)
\(=\frac{1}{1+2}\times2\)
\(=\frac{2}{3}\)
X×3 1/5-7/9= 2 1/3
X×16/5-7/9=7/3
X×16/5=7/3+7/9
X×16/5=28/9
X=28/9:16/5
X=35/36
a) \(x+4\frac{1}{5}=5\frac{2}{3}\times10\frac{1}{2}\)
\(x+\frac{21}{5}=\frac{17}{3}\times\frac{21}{2}\)
\(x+\frac{21}{5}=\frac{119}{2}\)
\(x=\frac{119}{2}-\frac{21}{5}\)
\(x=\frac{553}{10}\)
b) \(\frac{24}{5}-x=2\frac{1}{4}:1\frac{3}{4}\)
\(\frac{24}{5}-x=\frac{9}{4}:\frac{7}{4}\)
\(\frac{24}{5}-x=\frac{9}{4}.\frac{4}{7}\)
\(\frac{24}{5}-x=\frac{9}{7}\)
\(x=\frac{24}{5}-\frac{9}{7}\)
\(x=\frac{123}{35}\)
\(A>\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2014.2015}\)
\(A>\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+....+\frac{2015-2014}{2014.2015}\)
\(A>1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2014}-\frac{1}{2015}\)
\(A>1-\frac{1}{2015}\)
Mà \(\frac{1}{2015}< \frac{1}{4}\Rightarrow1-\frac{1}{2015}>1-\frac{1}{4}=\frac{3}{4}\Rightarrow A>\frac{3}{4}\)