K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 4 2020
https://i.imgur.com/GE6F4zW.jpg
TL
3 tháng 4 2020

1.

\(\left(2x+3^{ }\right)^4=16\)

\(\left(2x+3\right)^4=2^4\)

\(2x+3=2\)

\(2x=5\)

\(x=\frac{5}{2}\)

Vậy....

2 tháng 7 2019

|1/2x| = 3 - 2x

ĐKXĐ : 3 - 2x \(\ge\)0 => 2x \(\ge\) 3 => x \(\ge\)3/2

Ta có: |1/2x| = 3 - 2x

=> \(\orbr{\begin{cases}\frac{1}{2}x=3-2x\\\frac{1}{2}x=-3+2x\end{cases}}\)

=> \(\orbr{\begin{cases}\frac{1}{2}x+2x=3\\\frac{1}{2}x-2x=-3\end{cases}}\)

=> \(\orbr{\begin{cases}\frac{5}{2}x=3\\-\frac{3}{2}x=-3\end{cases}}\)

=> \(\orbr{\begin{cases}x=\frac{6}{5}\left(ktm\right)\\x=2\left(tm\right)\end{cases}}\)

=> x = 2 

|5x| = x - 12

ĐKXĐ : x - 12 \(\ge\)0 => x \(\ge\)12

Ta có: |5x| = x - 12

=> \(\orbr{\begin{cases}5x=x-12\\5x=-x+12\end{cases}}\)

=> \(\orbr{\begin{cases}5x-x=-12\\5x+x=12\end{cases}}\)

=> \(\orbr{\begin{cases}4x=-12\\6x=12\end{cases}}\)

=> \(\orbr{\begin{cases}x=-3\\x=2\end{cases}}\)(ktm)

=> pt vô nghiệm

2 tháng 7 2019

|2x - 5| = x + 1

ĐKXĐ: x + 1 \(\ge\)0 => x \(\ge\)-1

Ta có: |2x - 5| = x + 1

=> \(\orbr{\begin{cases}2x-5=x+1\\2x-5=-x-1\end{cases}}\)

=> \(\orbr{\begin{cases}2x-x=1+5\\2x+x=-1+5\end{cases}}\)

=> \(\orbr{\begin{cases}x=6\\3x=4\end{cases}}\)

=> \(\orbr{\begin{cases}x=6\\x=\frac{4}{3}\end{cases}}\)(tm)

Vậy ...

|7 - 2x| + 7 = 2x

=> |7 - 2x| = 2x - 7

ĐKXĐ: 2x - 7 \(\ge\)0 => 2x \(\ge\) 7 => x \(\ge\) 7/2

Ta có: |7 - 2x| = 2x - 7

=> \(\orbr{\begin{cases}7-2x=2x-7\\7-2x=7-2x\end{cases}}\)

=> 7 + 7 = 2x + 2x

hoặc x tùy ý (TMĐK)

=> 4x = 14 => x = 7/2

hoặc x tùy ý (Tm ĐK)

Vậy ...

8 tháng 11 2016

a) Theo bài ra , ta có : x : y : z = 3 : 5 : ( -2 )

=> \(\frac{x}{3}=\frac{y}{5}=\frac{z}{-2}\) => \(\frac{5x}{15}=\frac{y}{5}=\frac{3z}{-6}\) và 5x - y + 3z = -16

Áp dụng t/c của dãy tỉ số = nhau , ta có :

\(\frac{5x}{15}=\frac{y}{5}=\frac{3z}{-6}=\frac{5x-y+3z}{15-5+\left(-6\right)}=\frac{-16}{-4}=4\)

\(\frac{x}{3}=4\Rightarrow x=4.3=12\\ \frac{y}{5}=4\Rightarrow y=4.5=20\\ \frac{z}{-2}=4\Rightarrow z=-2.4=-8\)

Vậy x = 12 ; y = 20 ; z = -8

 

8 tháng 11 2016

a) Ta có : x : y : z = 3 : 5 : (-2) \(\Rightarrow\frac{x}{3}=\frac{y}{5}=\frac{z}{-2}\Rightarrow\frac{5x}{15}=\frac{y}{5}=\frac{3z}{-6}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\frac{5x}{15}=\frac{y}{5}=\frac{3z}{-6}=\frac{5x-y+3z}{15-5+-6}=-\frac{16}{4}=-4\)

\(\Rightarrow\begin{cases}\frac{5x}{15}=4\\\frac{y}{5}=4\\\frac{3z}{-6}=4\end{cases}\Rightarrow\begin{cases}5x=4.15\\y=4.5\\3z=4.\left(-6\right)\end{cases}\Rightarrow\begin{cases}5x=60\\y=20\\3z=-24\end{cases}\Rightarrow\begin{cases}x=12\\y=20\\z=-8\end{cases}\)

b) 2x = 3y \(\Rightarrow\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{21}=\frac{y}{14}\) (1)

5y = 7z \(\Rightarrow\frac{y}{7}=\frac{z}{5}\Rightarrow\frac{y}{14}=\frac{z}{10}\) (2)

Từ (1) và (2) \(\Rightarrow\frac{x}{21}=\frac{y}{14}=\frac{z}{10}\Rightarrow\frac{3x}{63}=\frac{7y}{98}=\frac{5z}{50}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\frac{3x}{63}=\frac{7y}{98}=\frac{5z}{50}=\frac{3x-7y+5x}{63-98+50}=\frac{30}{15}=2\)

\(\Rightarrow\begin{cases}\frac{3x}{63}=2\\\frac{7y}{98}=2\\\frac{5z}{50}=2\end{cases}\Rightarrow\begin{cases}3x=2.63\\7y=2.98\\5z=2.50\end{cases}\Rightarrow\begin{cases}3x=126\\7y=196\\5z=100\end{cases}\Rightarrow\begin{cases}x=42\\y=28\\z=20\end{cases}\)

c) x : y : z = 4 : 5 : 6 \(\Rightarrow\frac{x}{4}=\frac{y}{5}=\frac{z}{6}\Rightarrow\frac{x^2}{16}=\frac{y^2}{25}=\frac{z^2}{36}\Rightarrow\frac{x^2}{16}=\frac{2y^2}{50}=\frac{z^2}{36}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\frac{x^2}{16}=\frac{2y^2}{50}=\frac{z^2}{36}=\frac{x^2-2y^2+z^2}{16-50+36}=\frac{18}{2}=9\)

\(\Rightarrow\begin{cases}x^2=9.16\\2y^2=9.50\\z^2=9.36\end{cases}\Rightarrow\begin{cases}x^2=144\\y^2=450\div2=225\\z^2=324\end{cases}\Rightarrow\begin{cases}x=\pm12\\y=\pm15\\z=\pm18\end{cases}\)

Vậy x = 12 ; y = 15 ; z = 18

hoặc x = -12 ; y = -15 ; z = -18

6 tháng 8 2019

c) \(\frac{2x}{8}=\frac{16}{x}\)

\(\Leftrightarrow\frac{x}{4}=\frac{16}{x}\)

\(\Leftrightarrow x^2=64\)

\(\Leftrightarrow x=\pm\sqrt{64}=\pm8\)

6 tháng 8 2019

b) \(4x-1=3x-2\)

\(\Leftrightarrow4x-3x=1-2\)

\(\Leftrightarrow x=-1\)

10 tháng 10 2018

\(3^{2x+4}:3^{x+1}=81\)

\(3^{2x+4-x-1}=3^4\)

\(3^{x+3}=3^4\)

\(\Rightarrow x+3=4\)

\(\Rightarrow x=1\)

10 tháng 10 2018

\(3^{2x+4}:3^{x+2}=81\)

\(\Rightarrow3^{2x+4-x-2}=3^4\)

\(\Rightarrow3^{x+2}=3^4\)

\(\Rightarrow x+2=4\)

\(\Rightarrow x=4-2=2\)

\(a;\left|1-2x\right|=3\)

\(\Leftrightarrow\left|2x-1\right|=3\Leftrightarrow2x-1=\pm3\)

\(\Leftrightarrow\orbr{\begin{cases}2x-1=3\\2x-1=-3\end{cases}\Leftrightarrow\orbr{\begin{cases}2x=4\\2x=-2\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=4:2=2\\x=\left(-2\right):2=-1\end{cases}}}\)

   Vậy x=2;-1

\(b;\left(x+1\right)\left(1-5x\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\1-5x=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-1\\5x=1\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-1\\x=\frac{1}{5}\end{cases}}}\)

AH
Akai Haruma
Giáo viên
25 tháng 6 2020

Đúng rồi bạn nhé.

25 tháng 6 2020

cảm ơn b