Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề sai: \(x^2=bc\) phải là \(a^2=bc\)
Ta có: \(\frac{a+b}{a-b}=\frac{c+a}{c-a}=k\)
\(\Rightarrow a+b=k.\left(a-b\right)\Leftrightarrow a+b=ka-kb\)
\(\Rightarrow a-ka=-b-kb\)
\(\Rightarrow a.\left(1-k\right)=-b.\left(1+k\right)\) ( 1)
Ta lại có: \(c+a=k.\left(c-a\right)\Leftrightarrow c+a=kc-ka\)
\(\Rightarrow c-kc=-a-ka\)
\(\Rightarrow c.\left(1-k\right)=-a.\left(1+k\right)\) ( 2)
Từ (1) và (2) \(\Rightarrow\frac{a.\left(1-k\right)}{c.\left(1-k\right)}=\frac{-b.\left(1+k\right)}{-a.\left(1+k\right)}\Leftrightarrow\frac{a}{c}=\frac{b}{a}\)
\(\Rightarrow a^2=bc\left(đpcm\right)\)
\(a^2=bc\Rightarrow\frac{a}{c}=\frac{b}{a}=\frac{a+b}{c+a}=\frac{a-b}{c-a}\)(Dãy tỉ số bằng nhau )
\(\Rightarrow\frac{a+b}{a-b}=\frac{c+a}{c-a}\)
\(k\)nhé !!!
Ta có:
\(\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}\)
=> \(\frac{a+b}{c}+1=\frac{b+c}{a}+1=\frac{c+a}{b}+1\)
=> \(\frac{a+b+c}{c}=\frac{a+b+c}{a}=\frac{a+b+c}{b}\)
+) Nếu a + b + c = 0 => a + b = -c; b + c = -a; c + a = -b
=> \(\frac{a+b}{c}=-1\);\(\frac{b+c}{a}=-1\); \(\frac{c+a}{b}=-1\)
=> M = (-1)3 = -1
+) Nếu a + b + c khác 0 => a = b = c => a + b = 2c; b + c = 2a; c + a = 2b
=> M \(\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)=\frac{a+b}{c}.\frac{b+c}{a}.\frac{c+a}{b}=2.2.2=8\)
Vậy M = -1 hoặc M = 8
ta co:
2bd =c[b+d]= cd+cb va a+c=2b nen ta co;
2bd =[a+c]d=ad+cd=cd+cb
hayad =bc =>dieu phai chung minh
áp dụng t/c DTSBN,ta có:
\(\frac{ab+ac}{2}=\frac{bc+ab}{3}=\frac{ca+bc}{4}=\frac{ab+ac-bc-ab+ca+bc}{2-3+4}=\frac{2ac}{3}\)
\(\frac{ab+ac}{2}=\frac{2ac}{3}\Leftrightarrow3ab+3ac=4ac\Leftrightarrow3ab=ac\Leftrightarrow3b=c\Leftrightarrow\frac{b}{1}=\frac{c}{3}\Rightarrow\frac{b}{5}=\frac{c}{15}\)(vì a khác 0)(!)
\(\frac{ca+cb}{4}=\frac{2ac}{3}\Leftrightarrow3ac+3cb=8ac\Leftrightarrow3bc=5ac\Rightarrow3b=5a\Rightarrow\frac{a}{3}=\frac{b}{5}\)(vì c khác 0)(@)
từ (!) và (@) => đpcm
1) \(2^{x+2}-96=2^x\)\(\Leftrightarrow2^{x+2}-2^x=96\)\(\Leftrightarrow2^x\left(2^2-1\right)=96\)
\(\Leftrightarrow3.2^x=96\)\(\Leftrightarrow2^x=32=2^5\)\(\Leftrightarrow x=5\)
Vậy \(x=5\)
2) \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)
\(\Rightarrow a=b\), \(b=c\), \(c=a\)\(\Rightarrow a=b=c\)
Câu 1:
\(2^{x+2}-96=2^x\)
\(\Leftrightarrow2^{x+2}-2^x=96\)(chuyển vế nha bạn)
\(\Leftrightarrow2^x.\left(2^2-1\right)=96\)
\(\Leftrightarrow2^x.3=96\Rightarrow2^x=32=\left(+-6\right)^2\)
\(\Rightarrow x=2\)
Câu 2:
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{a+b+c}=1\)
\(\Rightarrow a=b.1=b\)và \(b=c.1=c\)và \(c=a.1=a\)
\(\Rightarrow a=b=c\)