K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 11 2021

1.

\(a,=x^4-3x^3+5x^3-15x^2-x^2+3x-5x+15\\ =\left(x-3\right)\left(x^3+5x^2-x-5\right)\\ =\left(x-3\right)\left(x+5\right)\left(x^2-1\right)\\ =\left(x-3\right)\left(x-1\right)\left(x+1\right)\left(x+5\right)\\ b,=2x^4-2x^3+x^3-x^2-8x^2+8x+5x-5\\ =\left(x-1\right)\left(2x^3+x^2-8x+5\right)\\ =\left(x-1\right)\left(2x^3+5x^2-4x^2-10x+2x+5\right)\\ =\left(x-1\right)\left(2x+5\right)\left(x^2-2x+1\right)\\ =\left(x-1\right)^3\left(2x+5\right)\)

2.

\(a,=n^3\left(n+2\right)-n\left(n+2\right)=n\left(n^2-1\right)\left(n+2\right)\\ =\left(n-1\right)n\left(n+1\right)\left(n+2\right)\)

Đây là tích 4 số nguyên liên tiếp nên chia hết cho \(1\cdot2\cdot3\cdot4=24\)

Suy ra đpcm

Bổ sung điều kiện câu b: n chẵn và n>4

\(b,=n\left(n^3-4n^2-4n+16\right)=n\left[n^2\left(n-4\right)-4\left(n-4\right)\right]\\ =\left(n-4\right)\left(n-2\right)n\left(n+2\right)\)

Với n chẵn và \(n>4\) thì đây là tích 4 số nguyên chẵn liên tiếp nên chia hết cho \(2\cdot4\cdot6\cdot8=384\)

12 tháng 11 2021

Bài 1: 

c: \(=\left(x^2+3x+1\right)^2\)

13 tháng 9 2019

Ta phân tích biểu thức đã cho ra nhân tử :

\(A=n^4-4n^3-4n^2+16n\)

\(=\left[n^4-4n^3\right]-\left[4n^2-16n\right]=n^3(n-4)-4n(n-4)\)

\(=n(n-4)\left[n^2-4\right]=n(n-2)(n+2)(n-4)\)

Vì n chẵn và lớn hơn 4 nên ta đặt n = 2k + 2 , trong đó k > 1 và biểu diễn theo k,ta có : \(A=(2k+2)(2k)(2k+4)(2k-2)\)

\(=16k(k-1)(k+1)(k+2)=16(k-1)(k)(k+1)(k+2)\)

Ta nhận thấy \((k-1)(k)(k+1)(k+2)\)là tích của bốn số nguyên dương liên tiếp,tích này chia hết cho 2.3.4 = 24

Vậy tích A đã cho chia hết cho 16.2.3.4 = 384 => đpcm

30 tháng 11 2016

Mình làm gọn 1 xíu nhé

Ta có

\(x^4-4x^3-4x^2+16x=\left(x-4\right)\left(x-2\right)x\left(x+2\right)\)

Đây là tích của 4 số chẵn liên tiếp nên sẽ có 2 số chia hết cho 2, 1số chia hết cho 4, 1 số chia hết cho 8. Nên tích này chia hết cho 27.

Trong 3 số chẵn liên tiếp sẽ có 1 số chia hết cho 3

Vì 3 và 27 là nguyên tố cùng nhau nên

Tích chia hết cho 3.27 = 384

4 tháng 3 2019

x=0 ; x=2/3 - cau b 

anh giai tu giai thu

5 tháng 3 2019

Giai giùm đi

20 tháng 5 2017

2) Do \(\dfrac{1}{a+1}+\dfrac{1}{b+1}+\dfrac{1}{c+1}=2\\\)\(\Rightarrow\dfrac{1}{a+1}=2-\left(\dfrac{1}{b+1}+\dfrac{1}{c+1}\right)\)

=\(\dfrac{b}{b+1}+\dfrac{c}{c+1}\)

Áp dụng BĐT AM-GM ta có

\(\dfrac{1}{a+1}=\dfrac{b}{b+1}+\dfrac{c}{c+1}\) \(\ge\)\(2\sqrt{\dfrac{bc}{\left(b+1\right)\left(c+1\right)}}\)

Tương tự ta được

\(\dfrac{1}{b+1}\ge2\sqrt{\dfrac{ca}{\left(c+1\right)\left(a+1\right)}}\)

\(\dfrac{1}{c+1}\ge2\sqrt{\dfrac{ab}{\left(a+1\right)\left(b+1\right)}}\)

Nhân vế theo vế của 3 BĐT cùng chiều ta được

\(\dfrac{1}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}\)\(\ge\dfrac{8abc}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}\)

\(\Rightarrow abc\le\dfrac{1}{8}\)

Đẳng thức xảy ra\(\Leftrightarrow a=b=c=\dfrac{1}{2}\)