K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 10 2021

Mình đăng nhầm

 

8 tháng 11 2017

Chọn c. 8 tập con

23 tháng 5 2017

a)

=> AB ⊥ CD.
b)

Suy ra

Ta có => AB ⊥ MN.

Chứng minh tương tự được CD ⊥ MN.

17 tháng 5 2016

a) Hàm số f(x) =  xác định trên R\{} và ta có x = 4 ∈ (;+∞).

Giả sử (xn) là dãy số bất kì và xn ∈ (;+∞); xn ≠ 4 và x→ 4 khi n → +∞.

Ta có lim f(xn) = lim  =  = .

Vậy   = .

b) Hàm số f(x) =  xác định trên R.

Giả sử (xn) là dãy số bất kì và x→ +∞ khi n → +∞.

Ta có lim f(xn) = lim = lim  = -5.

Vậy   = -5.

 

4 tháng 6 2021

\(lim_{x\rightarrow1}\frac{x^3+2x-3}{x^2-x}\)   

\(=lim_{x\rightarrow1}\frac{\left(x-1\right)\left(x^2+x+3\right)}{x\left(x-1\right)}\)   

\(=lim_{x\rightarrow1}\frac{x^2+x+3}{x}\)   

\(=\frac{1^2+1+3}{1}\)   

\(=5\)   

\(lim_{x\rightarrow1}\frac{\sqrt{2x+2}-\sqrt{3x+1}}{x-1}\)   

\(=lim_{x\rightarrow1}\frac{\left(2x+2\right)-\left(3x+1\right)}{\left(x-1\right)\left(\sqrt{2x+2}+\sqrt{3x+1}\right)}\)   

\(=lim_{x\rightarrow1}\frac{2x+2-3x-1}{\left(x-1\right)\left(\sqrt{2x+2}+\sqrt{3x+1}\right)}\)   

\(=lim_{x\rightarrow1}\frac{-x+1}{\left(x-1\right)\left(\sqrt{2x+2}+\sqrt{3x+1}\right)}\)   

\(=lim_{x\rightarrow1}\frac{-1\left(x-1\right)}{\left(x-1\right)\left(\sqrt{2x+2}+\sqrt{3x+1}\right)}\)   

\(=lim_{x\rightarrow1}\frac{-1}{\left(\sqrt{2x+2}+\sqrt{3x+1}\right)}\)   

\(=\frac{-1}{\sqrt{2\cdot1+2}+\sqrt{3\cdot1+1}}\)   

\(=\frac{-1}{2+2}=\frac{-1}{4}\)

20 tháng 4 2022

Võ Ngọc Tú Uyên-41loading...    

17 tháng 5 2016

a)  (x4 – x2 + x - 1) =  x4(1 - ) = +∞.

b)  (-2x3 + 3x2 -5 ) =  x3(-2 +  ) = +∞.

c)   =   = +∞.

d)   =   
  =   = -1.

 

17 tháng 5 2016

a) Học sinh tự vẽ hình. Đồ thị hàm số y = f(x) là một đường không liền nét mà bị đứt quãng tại x= -1. Vậy hàm số đã cho liên tục trên khoảng (-∞; -1) và (- 1; +∞).

b) +) Nếu x < -1: f(x) = 3x + 2 liên tục trên  (-∞; -1) (vì đây là hàm đa thức).

+) Nếu x> -1: f(x) = x2 - 1 liên tục trên (-1; +∞) (vì đây là hàm đa thức).

+) Tại x = -1;

Ta có  f(x) =  (3x + 2) = 3(-1) +2 = -1.

 f(x) =  (x2 - 1) = (-1)2 - 1 = 0.

Vì  f(x) ≠  f(x) nên không tồn tại  f(x). Vậy hàm số gián đoạn tại 
x= -1.

 

17 tháng 5 2016

a)   =  = -4.

b)   =   =  (2-x) = 4.

c)   =   
  =   = .

d)    =    = -2.

e)   = 0 vì   (x2 + 1) =  x2( 1 + ) = +∞.

f)   =   = -∞, vì  > 0 với ∀x>0.