Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c) \(-\frac{x^4}{4}+2x^2y^3-4y^6=-\left(\frac{x^4}{4}-2x^2y^3+4y^6\right)=-\left[\left(\frac{x^2}{2}\right)^2-2.\frac{x^2}{2}.2y^3+\left(2y^3\right)^2\right]=-\left(\frac{x^2}{2}-2y^3\right)\)
a) \(x^2-5xy+6y^2\)
\(=x^2-3xy-2xy+6y^2\)
\(=x\left(x-3y\right)-2y\left(x-3y\right)\)
\(=\left(x-2y\right)\left(x-3y\right)\)
b) \(16\left(x-1\right)^2-36y^2\)
\(=\left(4x-4\right)^2-\left(6y\right)^2\)
\(=\left(4x+6y-4\right)\left(4x-6y-4\right)\)
c) \(4\left(x+y\right)-12\left(x+y\right)^2\)
\(=\left(x+y\right)\left[4-12\left(x+y\right)\right]\)
\(=4\left(x+y\right)\left[1-3x-3y\right]\)
b, x2-2x-y2+1
=(x-1)2-y2
(HĐT số 2)
=(x-y-1)(x+y-1)
(HĐT số 3)
c, (x2+x)2+4(x2+x)-12
=(x2+x)2+4(x2+x)+4-16
=(x2+x+2)2-16 (HĐT số 1)
=(x2+x+2-4).(x2+x+2+4)
(HĐT số 3)
=(x2+x-2).(x2+x+6)
=(x2+2x-x-2) .(x2+x+6)
=(x+2).(x-1). (x2+x+6)
a, x3+4x2-7x-10
=x3-2x2+6x2-12x+5x-10
=x2(x-2) + 6x(x-2)+5(x-2)
=(x-2)(x2+6x+5)
=(x-2)(x2+5x+x+5)
=(x-2)(x+5)(x+1)
Rút gọn
\(\left(2x+1\right)\left(4x^2-3x+1\right)+\left(2x-1\right)\left(4x^2+3x+1\right)\)
\(=8x^3-12x^2+2x+4x^2-3x+1+8x^3+12x^2+2x-4x^2-3x-1\)
\(=16x^3-2x\)
Phân tích đa thức thnahf nhân tử
\(4y^2+16y-x^2-8x\)
\(=\left(4y^2-x^2\right)+\left(16y-8x\right)\)
\(=\left(2y-x\right)\left(2y+x\right)+8\left(2y-x\right)\)
\(=\left(2y-x\right)\left(2y+x+8\right)\)
Chứng minh .............
Có: \(x^2+x+1=\left(x^2+2\cdot x\cdot\frac{1}{2}+\frac{1}{4}\right)+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)
Vì: \(\left(x+\frac{1}{2}\right)^2\ge0\)
=> \(\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\)
Kết luận......
a) \(xy+3x-7y-21\)
\(\Leftrightarrow\left(xy+3x\right)-\left(7y+21\right)\)
\(\Leftrightarrow x\left(y+3\right)-7\left(y+3\right)\)
\(\Leftrightarrow\left(x-7\right)\left(y+3\right)\)
b) \(2xy-15-6x+5y\)
\(\Leftrightarrow\left(2xy-6x\right)-\left(15-5y\right)\)
\(\Leftrightarrow x\left(2y-6\right)-5\left(3-y\right)\)
\(\Leftrightarrow2x\left(y-3\right)+5\left(y-3\right)\)
\(\Leftrightarrow\left(2x+5\right)\left(y-3\right)\)
a) \(x^2+5x+6=x^2+2x+3x+6=x\left(x+2\right)+3\left(x+2\right)=\left(x+3\right)\left(x+2\right)\)
b) \(x^2-4x+3=x^2-x-3x+3=x\left(x-1\right)-3\left(x-1\right)=\left(x-3\right)\left(x-1\right)\)
c) \(x^2+5x+4=x^2+x+4x+4=x\left(x+1\right)+4\left(x+1\right)=\left(x+4\right)\left(x+1\right)\)
d) \(x^2-x-6=x^2+2x-3x-6=x\left(x+2\right)-3\left(x+2\right)=\left(x-3\right)\left(x+2\right)\)
a) \(\frac{1}{4}x^2-5xy+25y^2=\left(\frac{1}{2}x\right)^2-5xy+\left(5y\right)^2\)
\(=\left(\frac{1}{2}x-5y\right)^2\)
b) \(\left(7x-4\right)^2-\left(2x+1\right)^2\)
\(=\left(7x-4+2x+1\right)\times\left(7x-4-2x-1\right)=\left(9x-3\right)\times\left(5x-5\right)\)
\(=3\times5\times\left(3x-1\right)\times\left(x-1\right)=15\times\left(3x-1\right)\times\left(x-1\right)\)
c)\(\left(x-2\right)^2-4y^2=\left(x-2-2y\right)\left(x-2+2y\right)\)
d) \(125-x^6=5^3-\left(x^2\right)^3=\left(5-x^2\right)\left(25+5x^2+x^4\right)\)