Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(M=m^2\left(m+n\right)-n^2m-n^3\)
\(=m^2\left(m+n\right)-n^2\left(m+n\right)\)
\(=\left(m+n\right)^2\left(m-n\right)\)
\(=\left(-2017+2017\right)^2\cdot\left(-2017-2017\right)\)
=0
b: \(N=n^3-3n^2-n\left(3-n\right)\)
\(=n^2\left(n-3\right)+n\left(n-3\right)\)
\(=n\left(n-3\right)\left(n+1\right)\)
\(=13\cdot10\cdot14=1820\)
a) \(5\left(x+4\right)-2x\left(4+x\right)\)
\(=\left(x+4\right)\left(5-2x\right)\)
b) \(\left(x-2017\right)x-5\left(2017-x\right)\)
\(=\left(x-2017\right)x+5\left(x-2017\right)\)
\(=\left(x-2017\right)\left(x+5\right)\)
c) \(\left(x+1\right)^2-\left(x+1\right)\)
\(=\left(x+1\right)\left(x+1-1\right)\)
= \(x\left(x+1\right)\)
d) \(9x^2\left(y-1\right)-18x\left(1-y\right)\)
\(=9x^2\left(y-1\right)+18x\left(y-1\right)\)
\(=\left(y-1\right)\left(9x^2+18x\right)\)
\(=9x\left(y-1\right)\left(x+2\right)\)
e) \(100x^2y-25xy^2-5xy\)
\(=5xy\left(20x-5y-1\right)\)
f) \(\left(n+1\right)n-\left(n+1\right)3\)
\(=\left(n+1\right)\left(n-3\right)\)
Bài 1:
a) x^3 + 2x^2 + x = x.(x^2+2x+1) = x.(x+1)^2
b) xy + y^2 - x - y
= y.(x+y) - (x+y)
= (x+y).(y-1)
a) \(P=-x^2+13x+2012\)
\(\Leftrightarrow P=-x^2+2.x.\dfrac{13}{2}-\left(\dfrac{13}{2}\right)^2+2054,25\)
\(\Leftrightarrow P=-\left[x^2-2.x.\dfrac{13}{2}+\left(\dfrac{13}{2}\right)^2\right]+2054,25\)
\(\Leftrightarrow P=-\left(x-\dfrac{13}{2}\right)^2+2054,25\)
Vậy GTLN của \(P=2054,25\) khi \(x=\dfrac{13}{2}\)
b) \(A=x^2-2x+2\)
\(\Leftrightarrow A=x^2-2x+1+1\)
\(\Leftrightarrow A=\left(x-1\right)^2+1\)
Vậy GTNN của \(A=1\) khi \(x=1\)
1
a,\(x^2+5x+5xy+25y\)
\(=\left(x^2+5x\right)+\left(5xy+25y\right)\)
\(=x\left(x+5\right)+5y\left(x+5\right)\)
\(=\left(x+5y\right)\left(x+5\right)\)
b,Mình chưa làm được.
c,\(x^2-24x-25\)
\(=x^2+25x-x-25\)
\(=\left(x^2-x\right)+\left(25x-25\right)\)
\(=x\left(x-1\right)+25\left(x-1\right)\)
\(=\left(x+25\right)\left(x-1\right)\)
d,\(4x-8y\)
\(=4\left(x-2y\right)\)
e,\(x^2+2xy+y^2-16\)
\(=\left(x+y\right)^2-4^2\)
\(=\left(x+y-4\right)\left(x+y+4\right)\)
f,\(3x^2+5x-3xy-5y\)
\(=\left(3x^2-3xy\right)+\left(5x-5y\right)\)
\(=3x\left(x-y\right)+5\left(x-y\right)\)
\(=\left(3x+5\right)\left(x-y\right)\)
a, x6 - x4 + 2x3 + 2x
= x(x5- x3 + 2x2 + 2)
b, x2 + 2x + 1 - y2
= (x + 1)2 - y2
= (x + 1 + y)(x + 1 - y)
c, x2 + 2xy + y2 - 9z2
= (x + y)2 - 9z2
= (x + y + 3z)(x + y - 3z)s
d, x3 - 10x2 + 25x - 16xy2
= x(x2 - 10x + 25 - 16y2)
= x[(x - 5)2 - 16y2]
= x(x - 5 - 4y)(x - 5 + 4y)
e, 3xy2 - 2xy + 12x
= x(3y2 - 2y + 12)
a, -x - y2 + x2 - y = (x2 - y2) - (x + y)
= (x - y)(x + y) - (x + y)
= (x + y)(x - y - 1)
b, x( x + y ) - 5x - 5y = x(x + y) - 5(x + y)
= (x - 5)(x + y)
c, x2 - 5x + 5y - y2 = (x - y)(x + y) - 5(x - y)
= (x - y)(x + y - 5)
d, 5x3 - 5x2y - 10x2 + 10xy = 5x2(x - y) - 10x(x - y)
= 5x(x - y)(x - 2)
e, 27x3 - 8y3 = (3x - 2y)(9x2 + 6xy + 4y2)
f, x2 - y2 - x - y = (x - y)(x + y) - (x + y)
= (x + y)(x - y - 1)
g, x2 - y2 - 2xy + y2 = (x2 - 2xy + y2) - y2
= (x - y)2 - y2
= (x - y - y)(x - y + y) = x(x - 2y)
h, x2 - y2 + 4 - 4x = (x2 - 4x + 4) - y2
= (x - 2)2 - y2
= (x - y - 2)(x + y - 2)
i, x3 + 3x2 + 3x + 1 - 27z3 = (x + 1)3 - 27z3
= (x+1-3z)(x2+2x+1+3xz+3z+9z2)
k, 4x2 + 4x - 9y2 + 1 = (2x + 1)2 - 9y2
= (2x - 3y + 1)(2x + 3y + 1)
m, x2 - 3x + xy - 3y = x(x - 3) + y(x - 3)
= (x - 3)(x + y)
a) Ta có: 10(x-y)-8y(y-x)
\(=10\left(x-y\right)+8y\left(x-y\right)\)
\(=2\left(x-y\right)\left(5+4y\right)\)
d) Ta có: \(x^2y-x^3-9y+9x\)
\(=x^2\left(y-x\right)-9\left(y-x\right)\)
\(=\left(y-x\right)\left(x^2-9\right)\)
\(=\left(y-x\right)\left(x-3\right)\left(x+3\right)\)
e) Ta có: \(2x+2y-x^2-xy\)
\(=2\left(x+y\right)-x\left(x+y\right)\)
\(=\left(x+y\right)\left(2-x\right)\)
f) Ta có: \(x^2-25+y^2+2xy\)
\(=\left(x+y\right)^2-5^2\)
\(=\left(x+y-5\right)\left(x+y+5\right)\)
g) Ta có: \(x^2-2x-4y^2-4y\)
\(=\left(x-2y\right)\left(x+2y\right)-2\left(x+2y\right)\)
\(=\left(x+2y\right)\left(x-2y-2\right)\)
h) Ta có: \(x^2\left(x-1\right)+16\left(1-x\right)\)
\(=x^2\left(x-1\right)-16\left(x-1\right)\)
\(=\left(x-1\right)\left(x^2-16\right)\)
\(=\left(x-1\right)\left(x-4\right)\left(x+4\right)\)
Bài 1:
e: Ta có: \(x\left(y-x\right)^2-x^2+2xy-y^2\)
\(=x\left(x-y\right)^2-\left(x-y\right)^2\)
\(=\left(x-y\right)^2\cdot\left(x-1\right)\)
Bài 2:
a: Ta có: \(M=m^2\left(m+n\right)-n^2m-n^3\)
\(=m^2\left(m+n\right)-n^2\left(m+n\right)\)
\(=\left(m+n\right)^2\cdot\left(m-n\right)\)
\(=\left(-2017+2017\right)^2\cdot\left(-2017-2017\right)\)
=0