Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(a^3y^3+125\)
\(=\left(ay+5\right)\left(a^2y^2-5ay+25\right)\)
b) Ta có: \(8x^3-y^3-6xy\cdot\left(2x-y\right)\)
\(=\left(2x-y\right)\left(4x^2+2xy+y^2\right)-6xy\left(2x-y\right)\)
\(=\left(2x-y\right)\left(4x^2+2xy-6xy+y^2\right)\)
\(=\left(2x-y\right)^3\)
a) ( 3x - 1 )2 - 4
= ( 3x - 1 ) - 22
= ( 3x - 1 - 2 )( 3x - 1 + 2 )
= ( 3x - 3 )( 3x + 1 )
= 3( x - 1 )( 3x + 1 )
b) ( x + y )2 - x2
= ( x + y - x )( x + y + x )
= y( 2x + y )
c) 100 - ( 2x - y )2
= 102 - ( 2x - y )2
= [ 10 - ( 2x - y ) ][ 10 + ( 2x - y ) ]
= ( 10 - 2x + y )( 10 + 2x - y )
d) ( 2x - 1 )2 - ( x - 1 )2
= [ ( 2x - 1 ) - ( x - 1 ) ][ ( 2x - 1 ) + ( x - 1 ) ]
= ( 2x - 1 - x + 1 )( 2x - 1 + x - 1 )
= x( 3x - 2 )
e) 4( x + 6 )2 - 9( 1 + x )2
= 22( x + 6 )2 - 32( 1 + x )2
= ( 2x + 12 )2 - ( 3 + 3x )2
= [ ( 2x + 12 ) - ( 3 + 3x ) ][ ( 2x + 12 + ( 3 + 3x ) ]
= ( 2x + 12 - 3 - 3x )( 2x + 12 + 3 + 3x )
= ( 9 - x )( 5x + 15 )
= 5( 9 - x )( x + 3 )
\(a,49.\left(y-4\right)^2-9y^2-36y-36=49\left(y-4\right)^2-9\left(y^2+4y+4\right)\)
\(=49\left(y-4\right)^2-9\left(y+4\right)^2=\left(7y-28\right)^2-\left(3y+12\right)^2\)
\(=\left(7y-28+3y+12\right)\left(7y-28-3y-12\right)\)
\(=\left(10y-16\right)\left(4y-40\right)=8\left(5y-8\right)\left(y-10\right)\)
\(b,xyz-\left(xy+yz+xz\right)+\left(x+y+z\right)-1\)
\(=xyz-xy-yz-xz+x+y+z-1\)
\(=\left(xyz-xy\right)-\left(xz-x\right)-\left(yz-y\right)+\left(z-1\right)\)
\(=xy\left(z-1\right)-x\left(z-1\right)-y\left(z-1\right)+\left(z-1\right)\)
\(=\left(z-1\right)\left(xy-x-y+1\right)\)
\(=\left(z-1\right)\text{[}x\left(y-1\right)-\left(y-1\right)\text{]}\)
\(=\left(z-1\right)\left(y-1\right)\left(x-1\right)\)
Lời giải:
$x^4y^4-z^4=(x^2y^2)^2-(z^2)^2=(x^2y^2-z^2)(x^2y^2+z^2)$
$=(xy-z)(xy+z)(x^2y^2+z^2)$
$(x+y+z)^2-4z^2=(x+y+z)^2-(2z)^2=(x+y+z-2z)(x+y+z+2z)$
$=(x+y-z)(x+y+3z)$
$\frac{-1}{9}x^2+\frac{1}{3}xy-\frac{1}{4}y^2=\frac{-4x^2+12xy-9y^2}{36}$
$=-\frac{4x^2-12xy+9y^2}{36}=-\frac{(2x-3y)^2}{36}=-\left(\frac{2x-3y}{6}\right)^2$
Câu trả lời của cô quá đúng luôn đấy