Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(=3y^2-6y-2x+1\)
b/ \(=-\left(x^3-3x^2+3x-1\right)=-\left(x-1\right)^3\)
c/ \(=\left(2-x\right)^3\)
d/ \(=xy^2+x^2y+3xy+x^2y+x^3+3x^2-3xy-3x^2-9x\)
\(=xy\left(y+x+3\right)+x^2\left(y+x+3\right)-3x\left(y+x+3\right)\)
\(=\left(xy+x^2-3x\right)\left(y+x+3\right)=x\left(y+x-3\right)\left(y+x+3\right)\)
e/ \(=xy-x^2+2x-y^2+xy-2y\)
\(=x\left(y-x+2\right)-y\left(y-x+2\right)=\left(x-y\right)\left(y-x+2\right)\)
a) =(2x+3y-1)2
b)=-(x-1)3
c)=-(x3-6x2+12x-8)=-(x-2)3
d)x3 + 2x2y + xy2 – 9x
= x(x2 + 2xy + y2 -9)
= x[(x2 + 2xy + y2) - 32]
= x[(x + y)2 - 32]
= x (x + y – 3)(x + y + 3)
e) 2x-2y-x2+2xy-y2=2(x-y)-(x-y)2=(x-y)(2-x+y)
Bài 1 : Khai triển :
a, \(\left(x+5\right)^2=x^2+10x+25\)
b, \(\left(x-3y\right)^2=x^2-6xy+9y^2\)
c, \(\left(x^2-6z\right)\left(x^2+6z\right)=x^4-36z^2\)
d, \(\left(x+3y\right)^3=x^3+9x^2y+27xy^2+27y^3\)
e, \(27x^3-9y^2+y-\frac{1}{27}=\left(3x-\frac{1}{3}\right)^3\)
g, \(8x^6+12x^4y+6x^2y^2+y^3=\left(2x^2+y\right)\)
h, \(4x^2+12x^4y+6x^22y^2+y^3=\left(\sqrt[3]{4x^2}+y\right)\)
7, \(27x^3+y^3=\left(3x+y\right)\left(9x^2-3xy+y^2\right)\)
8, \(8x^3-\frac{1}{125}y^3=\left(2x-\frac{1}{5}y\right)\left(4x^2+\frac{2}{5}xy+\frac{1}{25}y^2\right)\)
9, ĐK x >= 0
\(x-2\sqrt{x}-3=x-3\sqrt{x}+\sqrt{x}-3\)
\(=\sqrt{x}\left(\sqrt{x}+1\right)-3\left(\sqrt{x}+1\right)=\left(\sqrt{x}-3\right)\left(\sqrt{x}+1\right)\)
10, \(-4x^2-4x+10=-\left(4x^2+4x+1\right)+11\)
\(=-\left[\left(2x+1\right)^2-11\right]=-\left(2x+1-\sqrt{11}\right)\left(2x+1+\sqrt{11}\right)\)
11;12 xem lại đề
13, \(-x^3+6xy^2-12xy^2+8y^3=-\left(x^3-6xy^2+12xy^2-8y^3\right)=-\left(x-2y\right)^3\)
Trả lời:
7, \(27x^3+y^3=\left(3x+y\right)\left(9x^2-3xy+y^2\right)\)
8, \(8x^3-\frac{1}{125}y^3=\left(2x-\frac{1}{5}y\right)\left(4x^2+\frac{2}{5}xy+\frac{1}{25}y^2\right)\)
9, \(x-2\sqrt{x}-3\left(ĐK:x\ge0\right)\)
\(=x-3\sqrt{x}+\sqrt{x}-3=\sqrt{x}\left(\sqrt{x}-3\right)+\left(\sqrt{x}-3\right)=\left(\sqrt{x}-3\right)\left(\sqrt{x}+1\right)\)
10, \(10-4x-4x^2=-\left(4x^2+4x-10\right)=-\left(4x^2+4x+1-11\right)=-\left[\left(2x+1\right)^2-11\right]\)
\(=-\left(2x+1\right)^2+11=-\left[\left(2x+1\right)^2-11\right]=-\left(2x+1-\sqrt{11}\right)\left(2x+1+\sqrt{11}\right)\)
11,sửa đề: \(15x\left(x-3y\right)+20y\left(3y-x\right)=15x\left(x-3y\right)-20y\left(x-3y\right)=5\left(x-3y\right)\left(3x-4y\right)\)
12, \(25x^2-2=\left(5x-\sqrt{2}\right)\left(5x+\sqrt{2}\right)\)
13, sửa đề: \(-x^3+6x^2y-12xy^2+8y^3=-\left(x^3-6x^2y+12xy^2-8y^3\right)=-\left(x-2y\right)^3\)
1) \(12x^2-12xy+3y^2\)
\(=3\left(4x^2-4xy+y^2\right)\)
\(=3\left(2x-y\right)^2\)
5) \(4a^2-x^2-2x-1\)
\(=\left(2a\right)^2-\left(x^2+2x+1\right)\)
\(=\left(2a\right)^2-\left(x+1\right)^2\)
\(=\left(2a-x-1\right)\left(2a+x+1\right)\)
Bài 2: Ta có :\(x^3-6x^2y+12xy^2-8y^3=-8\)
\(\Leftrightarrow\left(x-2y\right)^3=\left(-2\right)^3\)
\(\Rightarrow x-2y=-2\) (*)
\(3x^2-12xy+12y^2=3.\left(x^2-4xy+4y^2\right)=3.\left(x-2y\right)^2\)
Thay (*) vào bt ta được: \(3.\left(-2\right)^2=12\)
A= 8x3 - 12x2y + 12xy2 - y3 + 12x2 - 12xy + 3y2 + 6x - 3y + 11
Ta có:
8x3 - 12x2y + 12xy2 - y3 = (2x - y)3 = 93 = 729
12x2 - 12xy + 3y2 = 4x2 - 4xy + y2 + 8x2 - 8xy + 2y2
= (2x - y)2 + 2 (4x2 - 4xy + y2)
= (2x - y)2 + 2(2x - y)2
= 92 + 2.92
= 243
6x - 3y = 3(2x - y) = 3.9 = 27
Vậy A= 8x3 - 12x2y + 12xy2 - y3 + 12x2 - 12xy + 3y2 + 6x - 3y + 11 = 729 + 243 + 27 =999