K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 3 2020

1. A = 75(42004 + 42003 +...+ 4+ 4 + 1) + 25

    A = 25 . [3 . (42004 + 42003 +...+ 4+ 4 + 1) + 1]

    A = 25 . (3 . 42004 + 3 . 42003 +...+ 3 . 4+ 3 . 4 + 3 + 1)

    A = 25 . (3 . 42004 + 3 . 42003 +...+ 3 . 4+ 3 . 4 + 4)

    A = 25 . 4 . (3 . 42003 + 3 . 42002 +...+ 3 . 4 + 3 + 1)

    A =100 . (3 . 42003 + 3 . 42002 +...+ 3 . 4 + 3 + 1) \(⋮\) 100

6 tháng 3 2020

3a) |x| = 1/2 

=> x = 1/2 hoặc x = -1/2

với x = 1/2:

A = \(3.\left(\frac{1}{2}\right)^2-2.\frac{1}{2}+1\)

\(A=\frac{3}{4}-1+1=\frac{3}{4}\)

với x = -1/2

A = \(3.\left(-\frac{1}{2}\right)^2-2\left(-\frac{1}{2}\right)+1\)

\(A=\frac{3}{4}+1+1=\frac{3}{4}+2=\frac{11}{4}\)

19 tháng 2 2018

      \(\frac{x+2}{327}+\frac{x+3}{326}+\frac{x+4}{325}+\frac{x+5}{324}+\frac{x+349}{5}=0\)

\(\Leftrightarrow\)\(\frac{x+2}{327}+1+\frac{x+3}{326}+1+\frac{x+4}{325}+1+\frac{x+5}{324}+1 +\frac{x+349}{5}-4=0\)

\(\Leftrightarrow\)\(\frac{x+329}{327}+\frac{x+329}{326}+\frac{x+329}{325}+\frac{x+329}{324}+\frac{x+329}{5}=0\)

\(\Leftrightarrow\)\(\left(x+329\right)\left(\frac{1}{327}+\frac{1}{326}+\frac{1}{325}+\frac{1}{324}+\frac{1}{5}\right)=0\)

\(\Leftrightarrow\)\(x+329=0\)   (vì  1/327 + 1/326 + 1/325 + 1/324 + 1/5  khác  0  )

\(\Leftrightarrow\)\(x=-329\)

19 tháng 2 2018

Bài 1 : 

\(\frac{x+2}{327}+\frac{x+3}{326}+\frac{x+4}{325}+\frac{x+5}{324}+\frac{x+349}{5}=0\)

\(\Leftrightarrow\)\(\left(\frac{x+2}{327}+1\right)+\left(\frac{x+3}{326}+1\right)+\left(\frac{x+4}{325}+1\right)+\left(\frac{x+5}{324}+1\right)+\left(\frac{x+349}{5}-4\right)=0\)

\(\Leftrightarrow\)\(\frac{x+329}{327}+\frac{x+329}{326}+\frac{x+329}{325}+\frac{x+329}{324}+\frac{x+329}{5}=0\)

\(\Leftrightarrow\)\(\left(x+329\right)\left(\frac{1}{327}+\frac{1}{326}+\frac{1}{325}+\frac{1}{324}+\frac{1}{5}\right)=0\)

Vì \(\left(\frac{1}{327}+\frac{1}{326}+\frac{1}{325}+\frac{1}{324}+\frac{1}{5}\right)\ne0\)

\(\Rightarrow\)\(x+329=0\)

\(\Rightarrow\)\(x=-329\)

Vậy \(x=-329\)

18 tháng 10 2018

\(3\frac{1}{2}-\frac{1}{2}.\left(-4,25-\frac{3}{4}\right)^2:\frac{5}{4}\)

\(=\frac{7}{2}-\frac{1}{2}.\left(-4,25-0,75\right)^2:\frac{5}{4}\)

\(=\frac{7}{2}-\frac{1}{2}.\left(-5\right)^2:\frac{5}{4}\)

\(=\frac{7}{2}-\frac{1}{2}.5.\frac{4}{5}\)

\(=\frac{7}{2}-2\)

\(=\frac{7}{2}-\frac{4}{2}\)

\(=\frac{3}{2}\)

\(\frac{3}{7}.1\frac{1}{2}+\frac{3}{7}.0,5-\frac{3}{7}.9\)

\(=\frac{3}{7}.\left(\frac{3}{2}+\frac{1}{2}-9\right)\)

\(=\frac{3}{7}.\left(2-9\right)\)

\(=\frac{3}{7}.\left(-7\right)\)

\(=-3\)

\(\frac{125^{2016}.8^{2017}}{50^{2017}.20^{2018}}=\frac{\left(5^3\right)^{2016}.\left(2^3\right)^{2017}}{\left(5^2\right)^{2017}.2^{2017}.\left(2^2\right)^{2018}.5^{2018}}=\frac{\left(5^3\right)^{2016}.\left(2^3\right)^{2017}}{\left(5^3\right)^{2017}.\left(2^3\right)^{2017}.2.5}=\frac{1}{5^4.2}=\frac{1}{1250}\)( tính nhẩm, ko chắc đúng )

18 tháng 10 2018

a) \(3\frac{1}{2}-\frac{1}{2}\cdot\left(-4,25-\frac{3}{4}\right)^2\) : \(\frac{5}{4}\)

\(3\cdot25:\frac{5}{4}\)

\(3\cdot\left(25:\frac{5}{4}\right)\)

=\(3\cdot20\)

=60

b)=\(\frac{3}{7}\cdot\left(1\frac{1}{2}+0,5-9\right)\)

=\(\frac{3}{7}\cdot\left(-7\right)\)

=\(-3\)

c) = 

Bài 1 : Thực hiện phép tính(1) D = \(1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+...+\frac{1}{16}\left(1+2+...+16\right)\)(2) M =\(\frac{\frac{1}{99}+\frac{2}{98}+\frac{3}{97}+...+\frac{99}{1}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}\)Bài 2 : Tìm x biết(1) \(x-\left\{x-\left[x-\left(-x+1\right)\right]\right\}=1\)(2) \(\left[\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2016}\right]\cdot...
Đọc tiếp

Bài 1 : Thực hiện phép tính

(1) D = \(1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+...+\frac{1}{16}\left(1+2+...+16\right)\)

(2) M =\(\frac{\frac{1}{99}+\frac{2}{98}+\frac{3}{97}+...+\frac{99}{1}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}\)

Bài 2 : Tìm x biết

(1) \(x-\left\{x-\left[x-\left(-x+1\right)\right]\right\}=1\)

(2) \(\left[\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2016}\right]\cdot x=\frac{2015}{1}+\frac{2014}{2}+...+\frac{1}{2015}\)

(3) \(\frac{x}{\left(a+5\right)\left(4-a\right)}=\frac{1}{a+5}+\frac{1}{4-a}\)

(4) \(\frac{x+2}{11}+\frac{x+2}{12}+\frac{x+2}{13}=\frac{x+2}{14}+\frac{x+2}{15}\)

(5) \(\frac{x+1}{2015}+\frac{x+2}{2014}+\frac{x+3}{2013}+\frac{x+4}{2012}+4=0\)

Bài 3 : 

(1) Cho : A =\(\frac{9}{1}+\frac{8}{2}+\frac{7}{3}+...+\frac{1}{9}\); B =\(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{10}\)

CMR : \(\frac{A}{B}\)Là 1 số nguyên

(2) Cho : D =\(\frac{1}{1001}+\frac{1}{1002}+\frac{1}{1003}+...+\frac{1}{2000}\)CMR : \(D< \frac{3}{4}\)

Bài 4 : Ký hiệu [x] là số nguyên lớn nhất không vượt quá x , gọi là phần nguyên của x.

VD : [1.5] =1 ; [3] =3 ; [-3.5] = -4

(1) Tính :\(\left[\frac{100}{3}\right]+\left[\frac{100}{3^2}\right]+\left[\frac{100}{3^3}\right]+\left[\frac{100}{3^4}\right]\)

(2) So sánh : A =\(\left[X\right]+\left[X+\frac{1}{5}\right]+\left[X+\frac{2}{5}\right]+\left[X+\frac{3}{5}\right]+\left[X+\frac{4}{5}\right]\)và B = [5x]. Biết x=3.7

0
8 tháng 10 2019

a, \(-\frac{5}{7}-\left(\frac{1}{2}-x\right)=-\frac{11}{4}\)

\(\frac{1}{2}-x=\frac{57}{28}\)

\(x=-\frac{43}{28}\)

b, \(\left(2x-1\right)^2-5=20\)

\(\Rightarrow\left(2x-1\right)^2=25\)

\(\Rightarrow2x-1=\pm5\)

\(\Rightarrow\left[{}\begin{matrix}2x-1=5\\2x-1=-5\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2x=6\\2x=-4\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)

8 tháng 10 2019

b, \(\left(2x-1\right)^2-5=20\)

\(\Rightarrow\left(2x-1\right)^2=25\)

\(\Rightarrow\left(2x-1\right)^2=5^2\)

\(\Rightarrow\left[{}\begin{matrix}2x-1=6\\2x-1=-6\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}2x=7\\2x=-5\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\frac{7}{2}\\x=-\frac{5}{2}\end{matrix}\right.\)

Vậy ...

8 tháng 10 2019

a) \(-\frac{5}{7}-\left(\frac{1}{2}-x\right)=\frac{-11}{4}\)

\(\Rightarrow\left(\frac{1}{2}-x\right)=\left(-\frac{5}{7}\right)+\frac{11}{4}\)

\(\Rightarrow\frac{1}{2}-x=\frac{57}{28}\)

\(\Rightarrow x=\frac{1}{2}-\frac{57}{28}\)

\(\Rightarrow x=-\frac{43}{28}\)

Vậy \(x=-\frac{43}{28}.\)

b) \(\left(2x-1\right)^2-5=20\)

\(\Rightarrow\left(2x-1\right)^2=20+5\)

\(\Rightarrow\left(2x-1\right)^2=25\)

\(\Rightarrow2x-1=\pm5\)

\(\Rightarrow\left[{}\begin{matrix}2x-1=5\\2x-1=-5\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2x=5+1=6\\2x=\left(-5\right)+1=-4\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=6:2\\x=\left(-4\right):2\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)

Vậy \(x\in\left\{3;-2\right\}.\)

d) \(\frac{x-6}{4}=\frac{4}{x-6}\)

\(\Rightarrow\left(x-6\right).\left(x-6\right)=4.4\)

\(\Rightarrow\left(x-6\right).\left(x-6\right)=16\)

\(\Rightarrow\left(x-6\right)^2=16\)

\(\Rightarrow x-6=\pm4\)

\(\Rightarrow\left[{}\begin{matrix}x-6=4\\x-6=-4\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=4+6\\x=\left(-4\right)+6\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=10\\x=2\end{matrix}\right.\)

Vậy \(x\in\left\{10;2\right\}.\)

Chúc bạn học tốt!

4 tháng 7 2017

a) \(\left|x\right|+\frac{1}{4}=\frac{1}{5}\)

    \(\left|x\right|=\frac{1}{5}-\frac{1}{4}\)

      \(\left|x\right|=\frac{-1}{20}\)(vô lý vì \(\left|x\right|\ge0\)với mọi x . Mà \(\frac{-1}{20}\)>0 )

Vậy không tồn tại x

b)\(\left|x+2\right|-\frac{1}{12}=\frac{1}{4}\)

     \(\left|x+2\right|=\frac{1}{4}+\frac{1}{12}\)

      \(\left|x+2\right|=\frac{1}{3}\)

       \(\Rightarrow x+2\varepsilon\left\{\frac{1}{3};\frac{-1}{3}\right\}\)

+)\(x+2=\frac{1}{3}\Rightarrow x=\frac{-5}{3}\)                                                            +)\(x+2=\frac{-1}{3}\Rightarrow x=\frac{-7}{3}\)

   Vậy \(x=\frac{-5}{3}\)hoặc \(x=\frac{-7}{3}\)

c)\(\left|x+5\right|=\frac{1}{7}-\left|\frac{4}{3}-\frac{1}{6}\right|\)

    \(\left|x+5\right|=\frac{1}{7}-\frac{7}{6}\)

     \(\left|x+5\right|=\frac{-43}{42}\)( vô lý vì \(\left|x+5\right|\ge0\)với mọi x , mà \(\frac{-43}{42}< 0\))

Vậy không tồn tại x

d)\(\left|x+\frac{5}{6}\right|=\left|\frac{1}{5}-\frac{2}{3}\right|+\frac{-3}{4}\)

    \(\left|x+\frac{5}{6}\right|=\frac{7}{15}+\frac{-3}{4}\)

     \(\left|x+\frac{5}{6}\right|=\frac{-17}{60}\)( Vô lý vì \(\left|x+\frac{5}{6}\right|\ge0\)với mọi x mà \(\frac{-17}{60}< 0\))

Vậy không tồn tại x

26 tháng 10 2016

a ) \(\left(\frac{2}{5}-x\right):1\frac{1}{3}+\frac{1}{2}=-4\)

     \(\left(\frac{2}{5}-x\right):\frac{4}{3}+\frac{1}{2}=-4\)

     \(\left(\frac{2}{5}-x\right):\frac{4}{3}=-4-\frac{1}{2}\)

     \(\left(\frac{2}{5}-x\right):\frac{4}{3}=-\frac{9}{2}\)

        \(\frac{2}{5}-x=-\frac{9}{2}.\frac{4}{3}\)

        \(\frac{2}{5}-x=-3\)

                   \(x=\frac{2}{5}-\left(-3\right)\)

                   \(x=\frac{2}{5}+3\)

                   \(x=\frac{3}{5}-\frac{15}{5}\)

                   \(x=-\frac{12}{5}\)

Vay \(x=-\frac{12}{5}\) 

    

  

26 tháng 10 2016

b ) \(\left(-3+\frac{3}{x}-\frac{1}{3}\right):\left(1+\frac{2}{5}+\frac{2}{3}\right)=-\frac{5}{4}\)

     \(\left(-3+\frac{3}{x}-\frac{1}{3}\right):\left(\frac{15}{15}+\frac{6}{15}+\frac{10}{15}\right)=-\frac{5}{4}\)

     \(\left(-3+\frac{3}{x}-\frac{1}{3}\right):\left(\frac{15+6+10}{15}\right)=-\frac{5}{4}\)

     \(\left(-3+\frac{3}{x}-\frac{1}{3}\right):\frac{31}{15}=-\frac{5}{4}\)

     \(\left(-3+\frac{3}{x}-\frac{1}{3}\right)=-\frac{5}{4}.\frac{31}{15}\)

     \(\left(-3+\frac{3}{x}-\frac{1}{3}\right)=-\frac{1}{4}.\frac{31}{3}\)

        \(-3+\frac{3}{x}-\frac{1}{3}=-\frac{31}{12}\)

        \(-3+\frac{3}{x}=-\frac{31}{12}+\frac{1}{2}\)

        \(-3+\frac{3}{x}=-\frac{31}{12}+\frac{6}{12}\)

        \(-3+\frac{3}{x}=\frac{-25}{12}\)

                     \(\frac{3}{x}=\frac{-25}{12}+3\)

                      \(\frac{3}{x}=\frac{-25}{12}+\frac{36}{12}\)

                      \(\frac{3}{x}=\frac{5}{6}\)

                      \(\frac{18}{6x}=\frac{5x}{6x}\)

Đèn dây , bạn tự làm tiếp nhé , de rồi chứ