K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 10 2017

1.

\(x-6\sqrt{x}-\sqrt{x}+6=0\)

\(\Leftrightarrow\left(\sqrt{x}-6\right)\left(\sqrt{x}-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=36\\x=1\end{cases}}\)

2.

\(\sqrt{\left(x-3\right)\left(x+3\right)}-3\sqrt{x-3}=0\)

\(\Leftrightarrow\sqrt{x-3}\left(\sqrt{x+3}-3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=3\\\sqrt{x-3}=3\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\\x=12\end{cases}}}\)

15 tháng 5 2018

a) \(\sqrt{x+3}-\sqrt{x-1}=\sqrt{2x+2}\)

Điều kiện: \(\hept{\begin{cases}x+3\ge0\\x-1\ge0\\2x+2\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge-3\\x\ge1\\x\ge-1\end{cases}\Leftrightarrow x\ge1}\)

    \(\Leftrightarrow\left(\sqrt{x+3}-\sqrt{x-1}\right)^2=\left(\sqrt{2x+2}\right)^2\)

     \(\Leftrightarrow x+3-2\sqrt{\left(x+3\right)\left(x-1\right)}+x-1=2x+2\)

     \(\Leftrightarrow2x+2-2\sqrt{\left(x+3\right)\left(x-1\right)}=2x+2\)

     \(\Leftrightarrow-2\sqrt{\left(x+3\right)\left(x-1\right)}=0\)

     \(\Leftrightarrow\left(x+3\right)\left(x-1\right)=0\)

      \(\Leftrightarrow\orbr{\begin{cases}x+3=0\\x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-3\left(l\right)\\x=1\left(n\right)\end{cases}}\)

Vậy \(S=\left\{1\right\}\)

     

Bài 1: 

b: \(\Leftrightarrow2+\sqrt{3x-5}=x+1\)

\(\Leftrightarrow\sqrt{3x-5}=x-1\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2-2x+1=3x-5\\x>=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x^2-5x+6=0\\x>=1\end{matrix}\right.\Leftrightarrow x\in\left\{2;3\right\}\)

c: \(\Leftrightarrow5x+7=16\left(x+3\right)\)

=>16x+48=5x+7

=>11x=-41

hay x=-41/11

AH
Akai Haruma
Giáo viên
23 tháng 5 2018

a) ĐKXĐ: \(x\geq -3\)

Ta có: \(\sqrt{x+3}=1+\sqrt{2}\)

\(\Rightarrow x+3=(1+\sqrt{2})^2\)

\(\Leftrightarrow x+3=1+2+2\sqrt{2}=3+2\sqrt{2}\)

\(\Leftrightarrow x=2\sqrt{2}\) (thỏa mãn)

Vậy \(x=2\sqrt{2}\)

b) ĐK: \(x\geq 0\)

Có: \(\sqrt{10+\sqrt{5x}}=\sqrt{6}+2\)

\(\Rightarrow 10+\sqrt{5x}=(\sqrt{6}+2)^2=6+4+4\sqrt{6}\)

\(\Leftrightarrow \sqrt{5x}=4\sqrt{6}=\sqrt{96}\)

\(\Leftrightarrow x=\frac{96}{5}\) (thỏa mãn)

Vậy.....

c) ĐK: \(x\geq 4\)

Ta có: \(\sqrt{x^2-16}-\sqrt{x-4}=0\)

\(\Leftrightarrow \sqrt{(x-4)(x+4)}-\sqrt{x-4}=0\)

\(\Leftrightarrow \sqrt{x-4}(\sqrt{x+4}-1)=0\)

\(\Leftrightarrow \left[\begin{matrix} \sqrt{x-4}=0\\ \sqrt{x+4}=1\end{matrix}\right. \Leftrightarrow \left[\begin{matrix} x=4\\ x=-3\end{matrix}\right.\) (loại $x=-3$ vì $x\geq 4$)

Vậy \(x=4\)

AH
Akai Haruma
Giáo viên
23 tháng 5 2018

d) ĐK: \(x\ge 0\)

Ta có: \(x-6\sqrt{x}+5=0\)

\(\Leftrightarrow (x-\sqrt{x})-5(\sqrt{x}-1)=0\)

\(\Leftrightarrow \sqrt{x}(\sqrt{x}-1)-5(\sqrt{x}-1)=0\)

\(\Leftrightarrow (\sqrt{x}-5)(\sqrt{x}-1)=0\)

\(\Leftrightarrow \left[\begin{matrix} \sqrt{x}-5=0\\ \sqrt{x}-1=0\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x=25\\ x=1\end{matrix}\right.\) (đều t/m)

e) ĐK: \(x\geq 3\)

\(\sqrt{x-3}\geq 7\)

\(\Leftrightarrow x-3\geq 49\)

\(\Leftrightarrow x\geq 52\). Kết hợp với ĐK suy ra \(x\geq 52\)

f) ĐK: \(x\geq -1\)

Ta có: \(\sqrt{x+1}\leq 3\)

\(\Leftrightarrow x+1\leq 9\)

\(\Leftrightarrow x\leq 8\)

Kết hợp với ĐK suy ra \(-1\leq x\leq 8\)

8 tháng 8 2019

b,

+ Với \(x=0\) \(\Rightarrow PTVN\)

+ Với \(x\ne0\), chia cả 2 vế cho \(x^2\) :

\(PT\Leftrightarrow x^2-16x+46+\frac{144}{x}+\frac{81}{x^2}=0\)

\(\Leftrightarrow\left(x^2+\frac{81}{x^2}\right)-16\left(x-\frac{9}{x}\right)+46=0\)

Đặt \(x-\frac{9}{x}=t\Rightarrow t^2=x^2+\frac{81}{x^2}-18\)

\(\Leftrightarrow t^2+18-16t+46=0\)

\(\Leftrightarrow t^2-16t+64=0\Rightarrow t=8\)

\(\Leftrightarrow x-\frac{9}{x}=8\Leftrightarrow x^2-8x-9=0\) \(\Rightarrow\left[{}\begin{matrix}x=-1\\x=9\end{matrix}\right.\) (t/m)

9 tháng 8 2019

cậu xem làm được mấy bài kia không làm giùm với (đang gấp) :))

10 tháng 10 2020

5) \(ĐK:x\ge-\frac{3}{2}\)

\(x^3+4x-\left(2x+7\right)\sqrt{2x+3}=0\)

\(\Leftrightarrow\frac{x^3+4x}{2x+7}=\sqrt{2x+3}\Leftrightarrow\frac{x^3+4x}{2x+7}-3=\sqrt{2x+3}-3\)

\(\Leftrightarrow\frac{\left(x-3\right)\left(x^2+3x+7\right)}{2x+7}=\frac{2\left(x-3\right)}{\sqrt{2x+3}+3}\)

\(\Leftrightarrow\left(x-3\right)\left(\frac{x^2+3x+7}{2x+7}-\frac{2}{\sqrt{2x+3}+3}\right)=0\)

(không có nghiệm thực)

Vậy phương trình có 1 nghiệm duy nhất là 3

10 tháng 10 2020

1) \(Pt\Leftrightarrow-x^2-3x+10=3\sqrt{x^2+3x}\)( đk: \(x\le-3,x\ge0\)

Đặt \(t=\sqrt{x^2+3x},t\ge0\)

Pt trở thành: \(-t^2-3t+10=0\Leftrightarrow t=2\left(dot\ge0\right)\)

giải \(\sqrt{x^2+3x}=2\Leftrightarrow\orbr{\begin{cases}x=1\\x=-4\end{cases}}\)

4 tháng 7 2019

Làm hơi tắt xíu, có gì ko hiểu cmt nha :>

\(a.\sqrt{x-1}=3\left(ĐK:x\ge1\right)\Leftrightarrow x-1=9\Leftrightarrow x=10\)

\(b.\sqrt{x^2-4x+4}=2\\ \Leftrightarrow\sqrt{\left(x-2\right)^2}=2\\ \Leftrightarrow\left|x-2\right|=2\\ \Leftrightarrow\left[{}\begin{matrix}x-2=2\left(x\ge2\right)\\2-x=2\left(x< 2\right)\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=4\\x=0\end{matrix}\right.\)

\(c.\sqrt{25x^2-10x+1}=4x-9\\ \Leftrightarrow\sqrt{\left(5x-1\right)^2}=4x-9\\ \Leftrightarrow\left|5x-1\right|=4x-9\\\Leftrightarrow \left[{}\begin{matrix}5x-1=4x-9\left(x\ge\frac{1}{5}\right)\\1-5x=4x-9\left(x< \frac{1}{5}\right)\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=-8\left(ktm\right)\\x=\frac{10}{9}\left(ktm\right)\end{matrix}\right.\)

4 tháng 7 2019

\(d.\sqrt{x^2+2x+1}=\sqrt{x+1}\left(ĐK:x\ge-1\right)\\ \Leftrightarrow x^2+2x+1=x+1\\ \Leftrightarrow x^2+x=0\Leftrightarrow x\left(x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)

e. ĐK: \(\left[{}\begin{matrix}x\ge3\\x\le-3\end{matrix}\right.\)

\(\sqrt{x^2-9}+\sqrt{x^2-6x+9}=0\\ \Leftrightarrow\sqrt{\left(x-3\right)\left(x+3\right)}+\sqrt{\left(x-3\right)^2}=0\\ \Leftrightarrow\sqrt{x-3}\left(\sqrt{x+3}+\sqrt{x-3}\right)=0\\ \Leftrightarrow\sqrt{x-3}=0\\ \Leftrightarrow x-3=0\Leftrightarrow x=3\)

Câu cuối chưa nghĩ ra, sorry :<

30 tháng 7 2019

\(\sqrt{4x}=\sqrt{5}\Rightarrow4x=5\Leftrightarrow x=1,25\)

\(\sqrt{4\left(1-x\right)^2}-6=0\Leftrightarrow4\left(1-x\right)^2=36\Leftrightarrow\left(1-x\right)^2=9\Leftrightarrow\left[{}\begin{matrix}1-x=3\\1-x=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=4\end{matrix}\right.\)

\(\sqrt{x^2-4x+4}=\sqrt{\left(x-2\right)^2}=\left|x-2\right|=3\Leftrightarrow\left[{}\begin{matrix}x-2=-3\\x-2=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=5\end{matrix}\right.\)

30 tháng 7 2019

tai sao tu\(\sqrt{4\left(1-x\right)^2}-6\) lai thanh \(4\left(1-x\right)^2\)=36