K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 2 2017

1, \(x^4+y^4=\left(x^2+y^2\right)^2-2x^2y^2=15^2-2.6^2=153\)

2, chú ý: \(n^2-\left(n+1\right)^2=-\left(2n+1\right)\)

\(M=\left(1^2-2^2\right)+\left(3^2-4^2\right)+...+\left(2015^2-2016^2\right)+2017^2\)

\(=-3-7-11-...-4031+2017^2\)

\(=-1008.4034+2017^2=2017^2-2017.2016=\)\(2017\left(2017-2016\right)=2017\)

12 tháng 2 2017

Từ x2+y2= 15 và xy=6 ta có hệ pt

\(\hept{\begin{cases}^{x^2+y^2=15}\\x=\frac{6}{y}\end{cases}}\Leftrightarrow\hept{\begin{cases}\left(\frac{6}{y}\right)^2+y^2=15\Leftrightarrow36+y^4-15y^2=0\left(1\right)\\x=\frac{6}{y}\end{cases}}\)

giải pt (1)\(y^4-15y^2+36=y^4-3y^2-12y^2+36=y^2\left(y^2-3\right)-12\left(y^2-3\right)\)

tiếp \(\left(y^2-3\right)\left(y^2-12\right)=0\Leftrightarrow\orbr{\begin{cases}y^2=3\Rightarrow x^2=\frac{36}{3}=12\\y^2=12\Rightarrow x^2=\frac{36}{12}=3\end{cases}}\)

Không mất tính tổng quát nên x4+y4=(x2)2+(y2)2=122+32=153

15 tháng 6 2016

\(A=4x^2-2\left(y+2,5x^2\right)+x^2-4y\)

\(=4x^2-2y-5x^2+x^2-4y=-6y\)

\(B=\left(x+y\right).\left(x^4-x^3y+x^2y^2-xy^3+y^4\right)-\left(x^5+y^5-8\right)\)

\(=x^5-x^4y+x^3y^2-x^2y^3+xy^4+x^4y-x^3y^2+x^2y^3-xy^4+y^5-x^5-y^5+8\)

\(=8\)

Vậy BT B ko phụ thuộc vào biến

câu sau tương tự

\(5x\left(x+1\right)-3\left(x-5\right)+4\left(3x-6\right)=2x^2-7\)

\(\Rightarrow5x^2+5x-3x+15+12x-24=2x^2-7\)

\(\Rightarrow5x^2+14x-9=2x^2-7\Rightarrow5x^2+14x-9-2x^2+7=0\)

\(\Rightarrow3x^2+14x-2=0\)

\(\Rightarrow3\left(x^2+\frac{14}{3}x-\frac{2}{3}\right)=0\Rightarrow x^2+2.x.\frac{7}{3}+\frac{49}{9}-\frac{55}{9}=0\)

\(\Rightarrow\left(x+\frac{7}{3}\right)^2=\frac{55}{9}\Rightarrow x+\frac{7}{3}\in\left\{\sqrt{\frac{55}{9}};-\sqrt{\frac{55}{9}}\right\}\Rightarrow x\in\left\{\sqrt{\frac{55}{9}}-\frac{7}{3};-\sqrt{\frac{55}{9}}-\frac{7}{3}\right\}\)

15 tháng 6 2016

câu sau tự lm nhé,mk ko lm nữa đâu

2 tháng 12 2019

Ta có : \(x^4-7x^2+y^2+16=2xy\)

=> \(\left(x^2-8x^2+16\right)+\left(x^2-2xy+y^2\right)=0\)

=> \(\left(x-4\right)^2+\left(x-y\right)^2=0\)

Vì \(\left(x-4\right)^2\ge0 \forall x ,\left(x-y\right)^2 \ge0 \forall x,y \)

=> \(\left(x-4\right)^2+\left(x-y\right)^2\ge0 \forall x,y\)

=> \(\hept{\begin{cases}x-4=0\\x-y=0\end{cases}\Rightarrow\hept{\begin{cases}x=4\\x=y=4\end{cases}}}\)

Thay vào \(A=4^{2016}.4^{2017}-4^{2017}.4^{2016}+4+4=8\)

Vậy A=8

2 tháng 12 2019

https://olm.vn/thanhvien/nguyentrangth8 bạn giỏi thế

Bài 1: a) Cho a + b + c = 9, a2 + b2 + c2 = 141. Tính giá trị biểu thức M = ab + bc + cab) Cho x + y = 1. Tính giá trị của biểu thức B = x3 + 3xy + y3c) Cho x + y = a; x2 + y2 = b, x3 + y3 = c. Tính giá trị của biểu thức N = a3 - 3ab + 2cd) Cho x + y = a, x - y = b. Tính giá trị của biểu thức D = x3 - y3 theo a và be) Cho x + y = a, x2 + y2 = b. Tính giá trị của biểu thức E = x3 + y3 theo a và bf) Cho x + y = 1, xy= -1. Tính...
Đọc tiếp

Bài 1: 
a) Cho a + b + c = 9, a+ b+ c= 141. Tính giá trị biểu thức M = ab + bc + ca
b) Cho x + y = 1. Tính giá trị của biểu thức B = x3 + 3xy + y3
c) Cho x + y = a; x2 + y= b, x+ y= c. Tính giá trị của biểu thức N = a3 - 3ab + 2c
d) Cho x + y = a, x - y = b. Tính giá trị của biểu thức D = x- ytheo a và b
e) Cho x + y = a, x+ y= b. Tính giá trị của biểu thức E = x3 + ytheo a và b
f) Cho x + y = 1, xy= -1. Tính giá trị của các biểu thức x+ y2 , x+ y3 , (x2 - y2)2 , x+ y6
g) Cho x - y = 2, xy = 1. Tính giá trị của các biểu thức x+ y2, x3 - y3, (x2- y2)2, x- y6
h) Cho a + b + c = 0, a2+ b+ c= 1. Tính giá trị của biểu thức H = a+ b+ c4
i) Cho a + b = a+ b=1. Chứng minh: a+ b= a4+ b4
j) Cho x + y = a + b; x+ y= a+ b2. CMR: x2000+ y2000 = a2000+ b2000
k) Cho a+ b= 1; c+ d= 1; ac + bd = 0. CMR: ab + cd = 0 
 

3
21 tháng 10 2018

1/Ta có: \(\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+bc+ca\right)=81\)

\(\Rightarrow M=ab+bc+ca=\frac{\left(81-141\right)}{2}\)

26 tháng 9 2020

a,\(a+b+c=9\)

\(\Rightarrow\left(a+b+c\right)^2=81\)

\(\Rightarrow a^2+b^2+c^2+2ab+2bc+2ca=81\)

Vì \(a^2+b^2+c^2=141\)

\(\Rightarrow2ab+2bc+2ca=-60\)

\(\Rightarrow2\left(ab+bc+ca\right)=-60\)

\(\Rightarrow ab+bc+ca=-30\)

Vậy ...

25 tháng 9 2016

1. Đặt \(t=x^2,t\ge0\)

\(3x^4+4x^2-2\ge3.0+4.0-2=-2\)

=> MIN = -2 khi x = 0

2. \(\left(x^2+2\right)\left(x+1\right)=0\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x^2+2=0\\x+1=0\end{array}\right.\)

Vì \(x^2+2\ge2>0\) => Vô nghiệm

Vậy x+1 = 0 => x = -1

3. Kết quả là 10

4. Ko rõ đề