Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
O là tâm đường tròn ngoại tiếp tam giác ABC nên ta vẽ đường kính AOE
Tứ giác BHCE là hình bình hành
M là trung điểm của BC. Do đó M là trung điểm của HE.
Kết hợp với O là trung điểm của AE suy ra OM là đường trung bình của \(\Delta AHE\)
\(\Rightarrow OM=\frac{1}{2}AH\)hay 2OM = AH
Vậy khoảng cách từ trực tâm tới đỉnh bằng 2 lần khoảng cách từ giao điểm các đường trung trực tới cạnh đối diện đỉnh đó (đpcm)
\(BĐT\Leftrightarrow\frac{\left(xy+yz+zx\right)\left(x+y+z\right)}{xyz}\)\(\ge3+\sqrt{x^2.\frac{x+y+z}{xyz}+1}+\sqrt{y^2.\frac{x+y+z}{xyz}+1}\)
\(+\sqrt{z^2.\frac{x+y+z}{xyz}+1}\)
Ta có biến đổi sau:
\(VT=\frac{xy\left(x+y\right)+yz\left(y+z\right)+zx\left(z+x\right)+3xyz}{xyz}\)\(=\frac{x+y}{z}+\frac{y+z}{x}+\frac{z+x}{y}+3\)
\(VP=\sqrt{\frac{x+y}{z}.\frac{y+z}{x}}+\sqrt{\frac{y+z}{x}.\frac{z+x}{y}}+\sqrt{\frac{z+x}{y}.\frac{x+y}{z}}\)
Nên bđt đã cho tương đương với:
\(\frac{x+y}{z}+\frac{y+z}{x}+\frac{z+x}{y}\)\(\ge\sqrt{\frac{x+y}{z}.\frac{y+z}{x}}+\sqrt{\frac{y+z}{x}.\frac{z+x}{y}}+\sqrt{\frac{z+x}{y}.\frac{x+y}{z}}\)
Đúng theo bđt cơ bản \(a^2+b^2+c^2\ge ab+bc+ca\)
\(\dfrac{\sqrt{1+x^3+y^3}}{xy}>=\sqrt{\dfrac{3}{xy}}\)
\(\dfrac{\sqrt{1+y^3+z^3}}{yz}>=\sqrt{\dfrac{3}{yz}}\)
\(\dfrac{\sqrt{1+z^3+x^3}}{xz}>=\sqrt{\dfrac{3}{xz}}\)
=>\(VT>=\sqrt{3}\left(\dfrac{1}{\sqrt{xy}}+\dfrac{1}{\sqrt{yz}}+\dfrac{1}{\sqrt{xz}}\right)=3\sqrt{3}\)
Ta có : \(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)\ge xy\left(x+y\right)\)
\(\Rightarrow1+x^3+y^3\ge xyz+xy\left(x+y\right)=xy\left(x+y+z\right)\ge3xy\sqrt[3]{xyz}=3xy\)
\(\frac{\sqrt{1+x^3+y^3}}{xy}\ge\frac{\sqrt{3xy}}{xy}=\sqrt{\frac{3}{xy}}\)
Tương tự : \(\frac{\sqrt{1+y^3+z^3}}{yz}\ge\frac{\sqrt{3yz}}{yz}=\sqrt{\frac{3}{yz}}\); \(\frac{\sqrt{1+x^3+z^3}}{xz}\ge\frac{\sqrt{3xz}}{xz}=\sqrt{\frac{3}{xz}}\)
\(\Rightarrow A\ge\sqrt{3}\left(\frac{1}{\sqrt{yz}}+\frac{1}{\sqrt{xy}}+\frac{1}{\sqrt{xz}}\right)\ge3\sqrt{3}\sqrt{\frac{1}{\sqrt{x^2y^2z^2}}}=3\sqrt{3}\)
\(\frac{xy\sqrt{z-1}+xz\sqrt{y-2}+yz\sqrt{x-3}}{xyz}\\ =\frac{xy\sqrt{z-1}}{xyz}+\frac{xz\sqrt{y-2}}{xyz}+\frac{yz\sqrt{x-3}}{xyz}\\ =\frac{\sqrt{z-1}}{z}+\frac{\sqrt{y-2}}{y}+\frac{\sqrt{x-3}}{x}\\ =\frac{2\sqrt{z-1}}{2z}+\frac{2\sqrt{2}\sqrt{y-2}}{2\sqrt{2}y}+\frac{2\sqrt{3}\sqrt{x-3}}{2\sqrt{3}x}\)
Áp dụng BDT Cô-si với 2 số không âm:
\(\Rightarrow\frac{2\sqrt{z-1}}{2z}+\frac{2\sqrt{2}\sqrt{y-2}}{2\sqrt{2}y}+\frac{2\sqrt{3}\sqrt{x-3}}{2\sqrt{3}x}\\ \le\frac{1+\left(z-1\right)}{2z}+\frac{2+\left(y-2\right)}{2\sqrt{2}y}+\frac{3+\left(x-3\right)}{2\sqrt{3}x}\\ =\frac{1}{2}+\frac{1}{2\sqrt{2}}+\frac{1}{2\sqrt{3}}=\frac{1}{2}+\frac{\sqrt{2}}{4}+\frac{\sqrt{3}}{6}\)
Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}z-1=1\\y-2=2\\x-3=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}z=2\\y=4\\x=6\end{matrix}\right.\)
Vậy.......
Bạn tham khảo tại đây:
Câu hỏi của Vũ Sơn Tùng - Toán lớp 9 | Học trực tuyến
Ta có:\(\frac{4+4\sqrt{1+x^2}}{4x}\le\frac{4+5+x^2}{4x}=\)\(\frac{x^2+9}{4x}\)Tương tự ta đc P\(\le\frac{x+y+z}{4}+\frac{9}{4}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)
\(=\frac{1}{4}\left(x+y+z\right)+\frac{9}{4}\left(\frac{xy+yz+zx}{xyz}\right)\)\(\le\frac{1}{4}\left(x+y+z\right)+\frac{9}{4}\cdot\frac{\left(x+y+z\right)^2}{3\left(x+y+z\right)}\)\(=x+y+z\)
Dấu '='xảy ra <=>\(\hept{\begin{cases}x+y+z=xyz\\x=y=z\end{cases}\Rightarrow x=y=z=}\)\(\frac{1}{\sqrt{3}}\)
1 .
Ta có : O là tâm đường tròn ngoại tiếp tam giác ABC nên ta vẽ đường kính AOE .
Tứ giác BHCE là hình bình hành
M là trung điểm của BC . Do đó M là trung điểm của HE
Kết hợp với O là trung điểm của AE
\(\Rightarrow OM\) là đường trung bình của \(\Delta AHE\)
\(\Rightarrow OM=\frac{1}{2}AH\)
Hay 2OM = AH
Vậy khoảng cách từ trực tâm tới đỉnh bằng 2 lần khoảng cách từ giao điểm các đường trung trực tới cạnh đối diện đỉnh đó ( đpcm )
2 .