Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Gói 5 số tự nhiên liên tiếp là a,á+1,a+2.a+3.a+4(a thuộc N)
+Nếu a chia hết cho 5 , bài toán giải xong
+ Nếu a chia 5 dư 1, đặt a=5b+1(b thuộc N ) ta có a+4=5b+1+4=(5b+5) chia hết cho 5
+ Nếu a chia 5 dư 2, đặt a=5c+2 (c thuộc N) ta có a+3=5c+2+3=(5c+5) chia hết cho 5
+ Nếu a chia 5 dư 3 , đặt a=5d+3(d thuộc N) ta có a+2=5đ +3+2=(5d+5) chia hết cho5
+ Nếu a chia 5 dư 3, đặt a= 5e +4 ( e thuốc N ) ta có a+1=5e+4+1=(5e+5) chia hết cho 5
Vậy trong 5 số tự nhiên liên tiếp, có một số chia hết cho 5
b, 19 m+19m+1,19m+2,19m+3,19m+4 là 5 số tự nhiên liên tiếp nên theo câu a có 1 số chia hết cho 5 ma 19m ko chia hết cho 5 với mọi m thuộc N
do đó : 19m+1,19m+2,19m+3,19m+4 có 1 số chia hết cho 5
=>(19m+1);(19m+2) (19m+3), (19m+4) chia hết cho 5
\(a,3^{200}=\left(3^2\right)^{100}=9^{100}\)
\(2^{300}=\left(2^3\right)^{100}=8^{100}\)
Có \(8^{100}< 9^{100}\Rightarrow2^{300}< 3^{200}\)
\(b,5^{200}=\left(5^2\right)^{100}=25^{100}\)
\(2^{500}=\left(2^5\right)^{100}=32^{100}>25^{100}=5^{200}\)
b , Áp dụng và so sánh :
3^200 và 2^300
3^200 = ( 3^2 )^100 = 9^100
2^300 = ( 2^3 )^100 = 8^100
Vì 9^100 > 8^100 => 3^200 > 2^300
Vậy 3^200 > 2^300
5^200 và 2^500
5^200 = ( 5^2 )^100 = 25^100
2^500 = ( 2^5 )^100 = 32^100
Vì 26^100 < 32^100 => 5^200 < 2^500
Vậy 5^200 < 2^500
Câu e đó nấy bạn, mik ghi thiếu đề, đáng lẽ là Chứng tỏ 2S +1 là lũy thừa của 3, sửa lại giúm mik nhoa
bài 2 :
Gọi UCLN ( n+3; 2n+5) là d
\(\Rightarrow n+3⋮d;2n+5⋮d\)
\(\Rightarrow2n+6⋮d;2n+5⋮d\)
\(\Rightarrow\left(2n+6\right)-\left(2n+5\right)⋮d\)
\(\Rightarrow2n+6-2n-5⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d\inƯ\left(1\right)=\left\{\pm1\right\}\)
mà 1 là UCLN(n+3;2n+5)
\(\Rightarrow d=1\)
Bài 1:
a: \(=2^{24}+2^{60}=2^{24}\left(2^{36}+1\right)\)
\(=2^{24}\left(2^4+1\right)\cdot A=17\cdot B⋮17\)
b: \(A=2\left(1+2+2^2+2^3\right)+2^5\left(1+2+2^2+2^3\right)+...+2^{57}\left(1+2+2^2+2^3\right)\)
\(=15\cdot\left(2+2^5+...+2^{57}\right)\) chia hết cho 3;5;15
\(A=2\left(1+2+2^2+...+2^{59}\right)⋮2\)
\(A=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{58}\left(1+2+2^2\right)\)
\(=7\left(2+2^4+...+2^{58}\right)⋮7\)
(-2)3000 = 23000 = (23)1000 = 81000 và (-3)2000 = 32000 = (32)1000 = 91000
=> (-2)3000 < (-3)2000
Câu 2,3,4 bạn tham khảo câu hỏi tương tư nhé !
Câu 1 :
Gọi k là ƯCLN của 12n + 1 và 30n + 2 ( n thuộc N )
Ta có 12n + 1 chia hết cho k ; 30n + 2 chia hết cho k
5( 12n + 1 ) và 2( 30 n + 2 )
60n + 5 và 60n + 4
=> ĐPCM
2.
\(5^{333}=\left(5^3\right)^{111}=125^{111}\)
\(3^{555}=\left(3^5\right)^{111}=243^{111}\)
Vì \(125^{111}< 243^{111}\Rightarrow5^{333}< 3^{555}\)
Vậy \(125^{111}< 243^{111}\Rightarrow5^{333}< 3^{555}\)
1) Ta có : (an)m = an.an...an = an.m (đpcm)
m thừa số
2) a. Ta có 5333 = (53)111 = 125111
Lại có 3555 = (35)111 = 243111
Vì 125 < 243
=> 125111 < 243111
=> 5333 < 3555
b. 2400 = 24.100 = (24)100 = 16100
4200 = 42.100 = (42)100 = 16100
=> 2400 = 4200 (= 16100)
3) Ta có 32008 = (34)502 = 81502
Vì ta có 81.81 = 6561 (có 4 chữ số)
=> 81.81.81 = 531441 (có 6 chữ số)
Nhận thấy tích của x số 81 là số có 2x chữ số
mà 81502 có 502 số 81 và số đó có 502 . 2 = 1004 chữ số < 1005
=> 32008 là số có ít hơn 1005 chữ số