K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 6 2020

\(y=\frac{\sqrt{2017\left(x-2015\right)}}{\sqrt{2017}\left(x+2\right)}+\frac{\sqrt{2016\left(x-2016\right)}}{\sqrt{2016}x}\le\frac{1}{2\sqrt{2017}}+\frac{1}{2\sqrt{2016}}\)

"=" \(\Leftrightarrow\)\(x=4032\)

15 tháng 4 2016

Theo giả thiết ta có : \(x+yz=yz-z-1=\left(z-1\right)\left(y+1\right)=\left(x+y\right)\left(y+1\right)\)

Tương tự : \(y+zx=\left(x+y\right)\left(x+1\right)\)

Và \(z+xy=\left(x+1\right)\left(y+1\right)\)

Nên \(P=\frac{x}{\left(x+y\right)\left(y+1\right)}+\frac{y}{\left(x+y\right)\left(x+1\right)}+\frac{z^2+2}{\left(x+1\right)\left(y+1\right)}\)

            \(=\frac{x^2+y^2+x+y}{\left(x+y\right)\left(x+1\right)\left(y+1\right)}+\frac{z^2+2}{\left(x+1\right)\left(y+1\right)}\)

Ta có \(x^2+y^2\ge\frac{\left(x+y\right)^2}{2};\left(x+1\right)\left(y+1\right)\le\frac{\left(x+y+2\right)^2}{4}\)

nên \(P\ge\frac{2\left(x+y\right)^2+4\left(x+y\right)}{\left(x+y+2\right)^2\left(x+y\right)}+\frac{4\left(z^2+2\right)}{\left(x+y+2\right)^2}=\frac{2\left(x+y\right)+4}{\left(x+y+2\right)^2}+\frac{4\left(z^2+2\right)}{\left(x+y+2\right)^2}\)

                                                       \(=\frac{2}{z+1}+\frac{4\left(z^2+2\right)}{\left(z+1\right)^2}=f\left(z\right);z>1\)

Lập bảng biến thiên ta được \(f\left(z\right)\ge\frac{13}{4}\) hay min \(P=\frac{13}{4}\) khi \(\begin{cases}z=3\\x=y=1\end{cases}\)

4 tháng 12 2019

Áp dụng bất đẳng thức Cauchy 

\(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\ge\frac{9}{xy+yz+zx}\)

\(M\ge\frac{1}{x^2+y^2+z^2}+\frac{9}{xy+yz+zx}=\frac{1}{x^2+y^2+z^2}+\frac{4}{2\left(xy+yz+xz\right)}+\frac{7}{xy+yz+zx}\)

Áp dụng BĐT Cauchy - Schwarz :

\(\frac{1}{x^2+y^2+z^2}+\frac{4}{2\left(xy+yz+zx\right)}\ge\frac{\left(1+2\right)^2}{\left(x+y+z\right)^2}=9\)

và \(\frac{7}{xy+yz+xz}\ge\frac{7}{\frac{1}{3}\left(x+y+z\right)^2}=21\)

\(\Rightarrow M\ge9+21=30\)

Dấu " = " xảy ra khi \(x=y=z=\frac{1}{3}\)

7 tháng 5 2020

Áp dụng BĐT Cauchy schwarz ta có:

\(M=\frac{1}{x^2+y^2+z^2}+\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\)

\(\ge\frac{1}{x^2+y^2+z^2}+\frac{9}{xy+yz+zx}\)

\(=\frac{1}{x^2+y^2+z^2}+\frac{4}{2\left(xy+yz+zx\right)}+\frac{7}{2\left(xy+yz+zx\right)}\)

\(\ge\frac{9}{\left(x+y+z\right)^2}+\frac{7}{\frac{2\left(x+y+z\right)^2}{3}}=30\)

Đẳng thức xảy ra tại x=y=z=1/3

20 tháng 10 2017

2)

A)A=|x-2017|+|x-17|

ta có A= \(\left|x-2017\right|+\left|x-17\right|=\left|x-2017\right|+\left|17-x\right|\)

\(\ge\left|x-2017+17-x\right|=\left|-2000\right|=2000\)

vậy A\(\ge2000\)

=>GTNN của A là 2000 khi x-2017 và x-17 cùng dấu

=> \(\left[{}\begin{matrix}x-2017\ge0\\x-17\ge0\end{matrix}\right.\) =>\(\left[{}\begin{matrix}x\ge2017\\x\ge17\end{matrix}\right.\)

hoặc

=>\(\left[{}\begin{matrix}x-2017\le0\\x-17\le0\end{matrix}\right.\) =>\(\left[{}\begin{matrix}x\le2017\\x\le17\end{matrix}\right.\)

=>17\(\le x\le2017\)

20 tháng 10 2017

Đúng ko vậy

Mình nghĩ nó sai sai

23 tháng 11 2019

Ta co:

\(\text{ }P=\Sigma_{cyc}\frac{ab}{2016-c}=\Sigma_{cyc}\frac{ab}{a+b}\le\Sigma_{cyc}\frac{\frac{\left(a+b\right)^2}{4}}{a+b}=\Sigma_{cyc}\frac{a+b}{4}=1008\)

Dau '=' xay ra khi \(a=b=c=672\)

11 tháng 4 2016

Áp dụng bất đăng thức Cauchy : \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{3}{\sqrt[3]{xyz}}\)

Nên \(P\ge\frac{3}{\sqrt[3]{xyz}}+2xyz\). Đẳng thức khi : x=y=z

Đặt \(t=\sqrt[3]{xyz}\)

Cũng theo Cauchy : \(1=x^2+y^2+z^2\ge3\sqrt{x^2y^2z^2}\). Đẳng thức khi x=y=z

Nên ta có 0<t\(\le\frac{\sqrt{3}}{3}\)

Xét hàm số \(f\left(t\right)=\frac{3}{t}+2t^3\) với  0<t\(\le\frac{\sqrt{3}}{3}\)

Tính \(f'\left(t\right)=-\frac{3}{t^2}+6t^2=\frac{3\left(2t^2-1\right)}{t^2}\)

Lập bảng biến thiên của f(t) rồi chỉ ra : \(f\left(t\right)\ge\frac{29\sqrt{3}}{9}\) với mọi t\(\in\left(0;\frac{\sqrt{3}}{3}\right)\)

Từ đó \(P\ge\frac{29\sqrt{3}}{9}\)

Giá trị nhỏ nhất của P là \(\frac{29\sqrt{3}}{9}\) đạt được khi \(x=y=z=\frac{\sqrt{3}}{3}\)

 
10 tháng 12 2017

cd đúng ko