K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 4 2017

Câu 1/ phân tích nhân tử là xong nên không giải.

Câu 2/ Ta có:

\(Q=\dfrac{a}{2\sqrt{b}-5}+\dfrac{b}{2\sqrt{c}-5}+\dfrac{c}{2\sqrt{a}-5}\ge\dfrac{3\sqrt[3]{abc}}{\sqrt[3]{\left(2\sqrt{b}-5\right)\left(2\sqrt{c}-5\right)\left(2\sqrt{a}-5\right)}}\)

\(=\dfrac{3\sqrt[3]{125.abc}}{\sqrt[3]{\left(2\sqrt{b}-5\right).5.\left(2\sqrt{c}-5\right).5.\left(2\sqrt{a}-5\right).5}}\)

\(\ge\dfrac{3\sqrt[3]{125abc}}{\sqrt[3]{\dfrac{\left(2\sqrt{a}-5+5\right)^2}{4}.\dfrac{\left(2\sqrt{b}-5+5\right)^2}{4}.\dfrac{\left(2\sqrt{c}-5+5\right)^2}{4}}}\) (Vì \(a,b,c>\dfrac{25}{4}\))

\(=\dfrac{3\sqrt[3]{125abc}}{\sqrt[3]{abc}}=15\)

Dấu = xảy ra khi \(a=b=c=25\)

PS: Bài nãy láu táu ghi nhầm dấu.

12 tháng 4 2017

giải c1 đi. tớ ko phân tích đc

14 tháng 2 2020

Do \(a,b,c>\frac{25}{4}\)(gt) nên suy ra \(2\sqrt{a}-5>0,2\sqrt{b}-5>0,2\sqrt{c}-5>0\)

Áp dụng bđt cô - si cho 2 số không âm, ta được:

\(\frac{a}{2\sqrt{b}-5}+2\sqrt{b}-5\ge2\sqrt{a}\)

\(\frac{b}{2\sqrt{c}-5}+2\sqrt{c}-5\ge2\sqrt{b}\)

\(\frac{c}{2\sqrt{a}-5}+2\sqrt{a}-5\ge2\sqrt{c}\)

Cộng từng vế của các bđt trên, ta được:

\(\text{ Σ}_{cyc}\frac{a}{2\sqrt{b}-5}+\text{ Σ}_{cyc}\left(2\sqrt{b}\right)-15\ge\text{ Σ}_{cyc}\left(2\sqrt{a}\right)\)

Suy ra \(\text{​​}\text{​​}\text{Σ}_{cyc}\frac{a}{2\sqrt{b}-5}\ge15\)

hay \(Q\ge15\)

(Dấu "="\(\Leftrightarrow a=b=c=25\))

3 tháng 12 2019

Ai phát hiện sai đề thì sửa và làm giúp mk hộ với, cảm ơn :) (chỉ cần làm tóm tắt thôi)

20 tháng 5 2017

2) Do \(\dfrac{1}{a+1}+\dfrac{1}{b+1}+\dfrac{1}{c+1}=2\\\)\(\Rightarrow\dfrac{1}{a+1}=2-\left(\dfrac{1}{b+1}+\dfrac{1}{c+1}\right)\)

=\(\dfrac{b}{b+1}+\dfrac{c}{c+1}\)

Áp dụng BĐT AM-GM ta có

\(\dfrac{1}{a+1}=\dfrac{b}{b+1}+\dfrac{c}{c+1}\) \(\ge\)\(2\sqrt{\dfrac{bc}{\left(b+1\right)\left(c+1\right)}}\)

Tương tự ta được

\(\dfrac{1}{b+1}\ge2\sqrt{\dfrac{ca}{\left(c+1\right)\left(a+1\right)}}\)

\(\dfrac{1}{c+1}\ge2\sqrt{\dfrac{ab}{\left(a+1\right)\left(b+1\right)}}\)

Nhân vế theo vế của 3 BĐT cùng chiều ta được

\(\dfrac{1}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}\)\(\ge\dfrac{8abc}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}\)

\(\Rightarrow abc\le\dfrac{1}{8}\)

Đẳng thức xảy ra\(\Leftrightarrow a=b=c=\dfrac{1}{2}\)

\(a,\sqrt{\left(\sqrt{2}-3\right)^2}.\sqrt{11+6\sqrt{2}}\)

\(=|\sqrt{2}-3|.\sqrt{9+6\sqrt{2}+2}\)

\(=(3-\sqrt{2}).\left(\sqrt{\left(3+\sqrt{2}\right)^2}\right)\)

\(=\left(3-\sqrt{2}\right)\left(3+\sqrt{2}\right)\)

\(=9-2=7\)

\(b,\sqrt{\left(\sqrt{3}-3\right)^2}.\sqrt{\frac{1}{3-\sqrt{3}}}\)

\(=\left(3-\sqrt{3}\right).\frac{\sqrt{1}}{\sqrt{3-\sqrt{3}}}\)

\(=\frac{3-\sqrt{3}}{\sqrt{3-\sqrt{3}}}\)

\(=\sqrt{3-\sqrt{3}}\)

\(c,-\frac{2}{3}\sqrt{\frac{\left(a-b\right)^3.b^5}{c}}.\frac{9}{4}\sqrt{\frac{c^3}{2\left(a-b\right)}}.\sqrt{98b}\)

\(=-\frac{2}{3}.\frac{\sqrt{\left(a-b\right)^3.b^5}}{\sqrt{c}}.\frac{9}{4}.\frac{\sqrt{c^3}}{\sqrt{2\left(a-b\right)}}.7\sqrt{2b}\)

\(=-\frac{2}{3}.\frac{\left(a-b\right)b^2\sqrt{\left(a-b\right)b}}{\sqrt{c}}.\frac{9}{4}.\frac{c\sqrt{c}}{\sqrt{2\left(a-b\right)}}.7\sqrt{2b}\)

\(=-\frac{2}{3}.\frac{9}{4}.7.\frac{\left(a-b\right).b^2\sqrt{\left(a-b\right)b}}{\sqrt{c}}.\frac{c\sqrt{c}}{\sqrt{2\left(a-b\right)}}.\sqrt{2b}\)

\(=-\frac{21}{2}.\left(a-b\right).b^2\sqrt{b}.c.\sqrt{b}\)

\(=\frac{-21}{2}.\left(a-b\right).b^3.c\)

\(d,\left(\sqrt{6}-3\sqrt{3}+5\sqrt{2}-\frac{1}{2}\sqrt{8}\right).2\sqrt{6}\)

\(=\left(\sqrt{6}-3\sqrt{3}+5\sqrt{2}-\frac{1}{2}.2\sqrt{2}\right).2\sqrt{6}\)

\(=\left(\sqrt{6}-3\sqrt{3}+5\sqrt{2}-\sqrt{2}\right).2\sqrt{6}\)

\(=\left(\sqrt{6}-3\sqrt{3}+4\sqrt{2}\right).2\sqrt{6}\)

\(=2.6-18\sqrt{2}+16\sqrt{3}\)

\(=12-18\sqrt{2}+16\sqrt{3}\)

1. a) \(\left\{{}\begin{matrix}x,y,z>0\\xyz=1\end{matrix}\right.\). Tìm max \(P=\frac{1}{\sqrt{x^5-x^2+3xy+6}}+\frac{1}{\sqrt{y^5-y^2+3yz+6}}+\frac{1}{\sqrt{z^5-z^2+zx+6}}\) b) \(\left\{{}\begin{matrix}x,y,z>0\\xyz=8\end{matrix}\right.\). Min \(P=\frac{x^2}{\sqrt{\left(1+x^3\right)\left(1+y^3\right)}}+\frac{y^2}{\sqrt{\left(1+y^3\right)\left(1+z^3\right)}}+\frac{z^2}{\sqrt{\left(1+z^3\right)\left(1+x^3\right)}}\) c) \(x,y,z>0.\) Min...
Đọc tiếp

1. a) \(\left\{{}\begin{matrix}x,y,z>0\\xyz=1\end{matrix}\right.\). Tìm max \(P=\frac{1}{\sqrt{x^5-x^2+3xy+6}}+\frac{1}{\sqrt{y^5-y^2+3yz+6}}+\frac{1}{\sqrt{z^5-z^2+zx+6}}\)

b) \(\left\{{}\begin{matrix}x,y,z>0\\xyz=8\end{matrix}\right.\). Min \(P=\frac{x^2}{\sqrt{\left(1+x^3\right)\left(1+y^3\right)}}+\frac{y^2}{\sqrt{\left(1+y^3\right)\left(1+z^3\right)}}+\frac{z^2}{\sqrt{\left(1+z^3\right)\left(1+x^3\right)}}\)

c) \(x,y,z>0.\) Min \(P=\sqrt{\frac{x^3}{x^3+\left(y+z\right)^3}}+\sqrt{\frac{y^3}{y^3+\left(z+x\right)^3}}+\sqrt{\frac{z^3}{z^3+\left(x+y\right)^3}}\)

d) \(a,b,c>0;a^2+b^2+c^2+abc=4.Cmr:2a+b+c\le\frac{9}{2}\)

e) \(\left\{{}\begin{matrix}a,b,c>0\\a+b+c=3\end{matrix}\right.\). Cmr: \(\frac{a}{b^3+ab}+\frac{b}{c^3+bc}+\frac{c}{a^3+ca}\ge\frac{3}{2}\)

f) \(\left\{{}\begin{matrix}a,b,c>0\\ab+bc+ca+abc=4\end{matrix}\right.\) Cmr: \(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\le3\)

g) \(\left\{{}\begin{matrix}a,b,c>0\\ab+bc+ca+abc=2\end{matrix}\right.\) Max : \(Q=\frac{a+1}{a^2+2a+2}+\frac{b+1}{b^2+2b+2}+\frac{c+1}{c^2+2c+2}\)

3
26 tháng 4 2020

Câu 1 chuyên phan bội châu

câu c hà nội

câu g khoa học tự nhiên

câu b am-gm dựa vào hằng đẳng thử rồi đặt ẩn phụ

câu f đặt \(a=\frac{2m}{n+p};b=\frac{2n}{p+m};c=\frac{2p}{m+n}\)

Gà như mình mấy câu còn lại ko bt nha ! để bạn tth_pro full cho nhé !

25 tháng 4 2020

Câu c quen thuộc, chém trước:

Ta có BĐT phụ: \(\frac{x^3}{x^3+\left(y+z\right)^3}\ge\frac{x^4}{\left(x^2+y^2+z^2\right)^2}\) \((\ast)\)

Hay là: \(\frac{1}{x^3+\left(y+z\right)^3}\ge\frac{x}{\left(x^2+y^2+z^2\right)^2}\)

Có: \(8(y^2+z^2) \Big[(x^2 +y^2 +z^2)^2 -x\left\{x^3 +(y+z)^3 \right\}\Big]\)

\(= \left( 4\,x{y}^{2}+4\,x{z}^{2}-{y}^{3}-3\,{y}^{2}z-3\,y{z}^{2}-{z}^{3 } \right) ^{2}+ \left( 7\,{y}^{4}+8\,{y}^{3}z+18\,{y}^{2}{z}^{2}+8\,{z }^{3}y+7\,{z}^{4} \right) \left( y-z \right) ^{2} \)

Từ đó BĐT \((\ast)\) là đúng. Do đó: \(\sqrt{\frac{x^3}{x^3+\left(y+z\right)^3}}\ge\frac{x^2}{x^2+y^2+z^2}\)

\(\therefore VT=\sum\sqrt{\frac{x^3}{x^3+\left(y+z\right)^3}}\ge\sum\frac{x^2}{x^2+y^2+z^2}=1\)

Done.

NV
11 tháng 11 2019

Câu 1:

a/ Biểu thức không tồn tại GTNN.

Bạn cứ thử với vài giá trị âm có trị tuyệt đối lớn, ví dụ \(a=-10^3\)\(b=-\frac{1}{10^3}\) sẽ thấy

b/

\(x^3+3x^2+3x+1+y^3+3y^2+3y+1+x+y+2=0\)

\(\Leftrightarrow\left(x+1\right)^3+\left(y+1\right)^3+x+y+2=0\)

\(\Leftrightarrow\left(x+y+2\right)\left[\left(x+1\right)^2+\left(y+1\right)^2-\left(x+1\right)\left(y+1\right)\right]+x+y+2=0\)

\(\Leftrightarrow\left(x+y+2\right)\left[\left(x+1-\frac{y+1}{2}\right)^2+\frac{3\left(y+1\right)^2}{4}+1\right]=0\)

\(\Rightarrow x+y=-2\Rightarrow\left\{{}\begin{matrix}x< 0\\y< 0\end{matrix}\right.\)

\(\Rightarrow-x+\left(-y\right)=2\)

\(M=\frac{1}{x}+\frac{1}{y}=-\left(\frac{1}{-x}+\frac{1}{-y}\right)\le-\frac{4}{-x+\left(-y\right)}=-\frac{4}{2}=-2\)

\(\Rightarrow M_{max}=-2\) khi \(x=y=-1\)

NV
11 tháng 11 2019

1c/

\(T=\sum\frac{a}{2a+a+b+c}=\frac{1}{25}\sum\frac{a\left(2+3\right)^2}{2a+a+b+c}\le\frac{1}{25}\sum\left(\frac{4a}{2a}+\frac{9a}{a+b+c}\right)\)

\(\Rightarrow T\le\frac{1}{25}\left(6+\frac{9\left(a+b+c\right)}{a+b+c}\right)=\frac{15}{25}=\frac{3}{5}\)

Dấu "=" xảy ra khi \(a=b=c\)

2 tháng 12 2020

Đặt \(\left(\frac{1}{a},\frac{1}{b},\frac{1}{c}\right)=\left(x,y,z\right)\)

\(x+y+z\ge\frac{x^2+2xy}{2x+y}+\frac{y^2+2yz}{2y+z}+\frac{z^2+2zx}{2z+x}\)

\(\Leftrightarrow x+y+z\ge\frac{3xy}{2x+y}+\frac{3yz}{2y+z}+\frac{3zx}{2z+x}\)

\(\frac{3xy}{2x+y}\le\frac{3}{9}xy\left(\frac{1}{x}+\frac{1}{x}+\frac{1}{y}\right)=\frac{1}{3}\left(x+2y\right)\)

\(\Rightarrow\Sigma_{cyc}\frac{3xy}{2x+y}\le\frac{1}{3}\left[\left(x+2y\right)+\left(y+2z\right)+\left(z+2x\right)\right]=x+y+z\)

Dấu "=" xảy ra khi x=y=z

6 tháng 10 2018

Ai giải giúp mình bài 1 với bài 4 trước đi

đặt \(P=\frac{1}{\sqrt{x^5-x^2+3xy+6}}+\frac{1}{\sqrt{y^5-y^2+3yz+6}}+\frac{1}{\sqrt{z^5-z^2+3zx+6}}\)ta có:\(\left(x^3+2x^2+3x+3\right)\left(x-1\right)^2\ge0\)\(\Leftrightarrow x^5-x^2\ge3x-3\)cmtt=>\(y^5-y^2\ge3y-3;z^5-z^2\ge3z-3\)\(\Rightarrow P\le\frac{1}{\sqrt{3x-3+3xy+6}}+\frac{1}{\sqrt{3y-3+3yz+6}}+\frac{1}{\sqrt{3z-3+3zx+6}}\)\(=\frac{1}{\sqrt{3\left(x+xy+1\right)}}+\frac{1}{\sqrt{3\left(y+yz+1\right)}}+\frac{1}{\sqrt{3\left(z+zx+1\right)}}\)áp dụng bunhia ta...
Đọc tiếp

đặt \(P=\frac{1}{\sqrt{x^5-x^2+3xy+6}}+\frac{1}{\sqrt{y^5-y^2+3yz+6}}+\frac{1}{\sqrt{z^5-z^2+3zx+6}}\)

ta có:\(\left(x^3+2x^2+3x+3\right)\left(x-1\right)^2\ge0\)

\(\Leftrightarrow x^5-x^2\ge3x-3\)

cmtt=>\(y^5-y^2\ge3y-3;z^5-z^2\ge3z-3\)

\(\Rightarrow P\le\frac{1}{\sqrt{3x-3+3xy+6}}+\frac{1}{\sqrt{3y-3+3yz+6}}+\frac{1}{\sqrt{3z-3+3zx+6}}\)

\(=\frac{1}{\sqrt{3\left(x+xy+1\right)}}+\frac{1}{\sqrt{3\left(y+yz+1\right)}}+\frac{1}{\sqrt{3\left(z+zx+1\right)}}\)

áp dụng bunhia ta có:

\(3\left(x+xy+1\right)\ge\left(\sqrt{x}+\sqrt{xy}+1\right)^2\)

cmtt\(\Rightarrow P\le\frac{1}{\sqrt{x}+\sqrt{xy}+1}+\frac{1}{\sqrt{y}+\sqrt{yz}+1}+\frac{1}{\sqrt{z}+\sqrt{zx}+1}\)

đặt \(\sqrt{x}=a;\sqrt{y}=b;\sqrt{z}=c\)

\(\Rightarrow\frac{1}{\sqrt{x}+\sqrt{xy}+1}+\frac{1}{\sqrt{y}+\sqrt{yz}+1}+\frac{1}{\sqrt{z}+\sqrt{zx}+1}=\frac{1}{a+ab+1}+\frac{1}{b+bc+1}+\frac{1}{c+ca+1}\)

\(=\frac{abc}{a+ab+abc}+\frac{1}{b+bc+1}+\frac{b}{bc+abc+b}=\frac{bc}{bc+b+1}+\frac{b}{bc+b+1}+\frac{1}{bc+b+1}=1\)

\(\Rightarrow P\le1\)

2
28 tháng 8 2017

Bạn làm đúng rồi

28 tháng 8 2017

mình học lớp 9 cho tớ hỏi sửa lớp ở đâu