Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1, n có dạng 2k+1(n\(\in N\)) Ta có:
\(n^2+4n+3=\left(2k+1\right)^2+4\left(2k+1\right)+3\)
\(=4k^2+4k+1+8k+4+3\)
\(=4k^2+12k+8\)
\(=4\left(k^2+3k+2\right)\)
\(=4\left(k+1\right)\left(k+2\right)\)
vì (k+1)(k+2) là tích 2 số tự nhiên liên tiếp \(\Rightarrow\left(k+1\right)\left(k+2\right)\) chia hết cho 2
mà 4(k+1)(k+2)chia hết cho 4
\(\Rightarrow n^2+4n+3\) chia hết cho 8 với mọi n là số lẻ.
2, ta có:
\(a^3+b^3+c^3=\left(a+b+c\right)\left(ab-bc-ac\right)+3abc\)
\(\Rightarrow a^3+b^3+c^3=3abc\) (vì a+b+c=0)
a+b+c=0
=>(a+b+c)3=0
=>a3+b3+c3+3a2b+3ab2+3b2c+3bc2+3a2c+3ac2+6abc=0
=>a3+b3+c3+(3a2b+3ab2+3abc)+(3b2c+3bc2+3abc)+(3a2c+3ac2+3abc)-3abc=0
=>a3+b3+c3+3ab(a+b+c)+3bc(a+b+c)+3ac(a+b+c)=3abc
Do a+b+c=0
=>a3+b3+c3=3abc(ĐPCM)
*) Ta có : \(4n^2+28n=8n\left(\dfrac{1}{2}n+\dfrac{7}{2}\right)\)
Vì \(8n⋮8\) nên suy ra \(8n\left(\dfrac{1}{2}n+\dfrac{7}{2}\right)⋮8\)
Vậy \((4n^2+28n)⋮8\) . ( Đpcm )
Ta có: \(n^2\left(n+1\right)+2n\left(n+1\right)=\left(n+1\right)\left(n^2+2n\right)=\left(n+1\right)n\left(n+2\right)=n\left(n+1\right)\left(n+2\right)\)
\(n\left(n+1\right)\left(n+2\right)⋮3\)( tích 3 số tự nhiên liên tiếp chia hết cho 3)
\(n\left(n+1\right)⋮2\)(ích hai số tự nhiên liên tiếp chia hết cho 2)
Mà (2;3)=1
=> \(n\left(n+1\right)\left(n+2\right)⋮6\)
=>\(n^2\left(n+1\right)+2n\left(n+1\right)⋮6\)
Câu b em kiểm tra lại đề bài.
kho that day nghi mai khong ra
mina hầu như lớp 9 trở xuống , ít người lớp 9 trở lên lắm