Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: f(0) = a.0 + b.0 + c = 0 + c = c
Mà f(0) là số nguyên nên c là số nguyên (1)
f(1) = a.1^2 + b.1 + c = a + b + c
Vì c là số nguyên nên a + b là số nguyên (2)
f(-1) = a.(-1)^2 + b.(-1) + c = a - b + c
Vì c là số nguyên nên a - b là số nguyên (3)
Mà tổng hai số nguyên là 1 số nguyên nên (a+b) + (a-b) cũng là số nguyên
hay 2a là số nguyên (4)
Từ (1), (2) và (4) ta suy ra: 2a, a+b, c đều là số nguyên
bài 1:
a) C= 0
hay 3x+5+(7-x)=0
3x+(7-x)=-5
với 3x=-5
x= -5:3= \(x = { {-5} \over 3}\)
với 7-x=-5
x= 7+5= 12
=> nghiệm của đa thức C là: x=\(x = { {-5} \over 3}\) và x= 12
mình làm một cái thui nhá, còn đa thức D cậu lm tương tự nha
a ) Ta có : \(A\left(x\right)=x^3+3x^2-4x-12\)
\(\Rightarrow A\left(2\right)=2^3+3.2^2-4.2-12\)
\(\Rightarrow A\left(2\right)=8+3.4-8-12\)
\(\Rightarrow A\left(2\right)=8+12-8-12\)
\(\Rightarrow A\left(2\right)=0\)
Vậy \(x=2\)là nghiệm của đa thức \(A\left(x\right)\)
\(B\left(x\right)=-2x^3+3x^2+4x+1\)
\(\Rightarrow B\left(2\right)=-2.2^3+3.2^2+4.2+1\)
\(\Rightarrow B\left(2\right)=-2.8+3.4+8+1\)
\(\Rightarrow B\left(2\right)=-16+12+8+1\)
\(\Rightarrow B\left(2\right)=5\ne0\)
Vậy \(x=2\)không là nghiệm của đa thức \(B\left(x\right)\)
b ) Tự làm nhé
Chúc bạn học tốt !!!
a) \(A\left(2\right)=2^3+3.2^2-4.2-12=0\)
=> \(x=2\)là nghiệm của đa thức A(x)
\(B\left(2\right)=-2.2^3+3.2^2+4.2+1=5\)
=> \(x=2\)không là nghiệm của đa thức B(x)
b) \(A\left(x\right)+B\left(x\right)=\left(x^3+3x^2-4x-12\right)+\left(-2x^3+3x^2+4x+1\right)\)
\(=-x^3+6x^2+13\)
\(A\left(x\right)-B\left(x\right)=\left(x^3+3x^2-4x-12\right)-\left(-2x^3+3x^2+4x+1\right)\)
\(=x^3+3x^2-4x-12+2x^3-3x^2-4x-1\)
\(=3x^3-8x+11\)
Ta có \(2x^2\ge0\Rightarrow2x^2+4\ge4>0\Rightarrow\left(2x^2+4\right)^2>0\)
mà\(\left(5x+1\right)^2\ge0\)
Do đó \(f\left(x\right)=\left(2x^2+4\right)^2+\left(5x+1\right)^2>0\)với mọi giá trị của x nên vô nghiệm.
a) f(x) = x(x - 5) + 2(x - 5)
x(x - 5) + 2(x - 5) = 0
<=> (x - 5)(x - 2) = 0
x - 5 = 0 hoặc x - 2 = 0
x = 0 + 5 x = 0 + 2
x = 5 x = 2
=> x = 5 hoặc x = 2
a, f(x) có nghiệm
\(\Leftrightarrow x\left(x-5\right)+2\left(x-5\right)=0\)
\(\Rightarrow\left(x-5\right)\left(x+2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-5=0\\x+2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=5\\x=-2\end{cases}}\)
->tự kết luận.
b1, để g(x) có nghiệm thì:
\(g\left(x\right)=2x\left(x-2\right)-x^2+5+4x=0\)
\(\Rightarrow2x^2-4x-x^2+5+4x=0\)
\(\Rightarrow x^2+5=0\)
Do \(x^2\ge0\forall x\)nên\(x^2+5\ge5\forall x\)
suy ra: k tồn tại \(x^2+5=0\)
Vậy:.....
b2,
\(f\left(x\right)=x\left(x-5\right)+2\left(x-5\right)\)
\(=x^2-5x+2x-10\)
\(=x^2-3x-10\)
\(f\left(x\right)-g\left(x\right)=x^2+5-\left(x^2-3x-10\right)\)
\(=x^2+5-x^2+3x-10=3x-5\)
a,a+b+c=0 <=>c=-a-b
Khi đ f(x)=ax^2+bx-a-b
f(x)=a(x^2-1)+b(x-1)=(x-1)(ax+a+b)
=>f(x) có nghiệm x=1
b,a-b+c=0 <=>c=b-a
Khi đó f(x)=ax^2+bx+b-a
f(x)=a(x^2-1)+b(x+1)=(x+1)(ax-a+b)
=>f(x) có nghiệm x=-1