Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(a+b\right)^2=a^2+2ab+b^2\)(1)
\(\left(a-b\right)^2+4ab=a^2-2ab+b^2+4ab=a^2+2ab+b^2\)(2)
từ (1) và (2) => đpcm
\(\left(a-b\right)^2=a^2-2ab+b^2\)(3)
\(\left(a+b\right)^2-4ab=a^2+2ab+b^2-4ab=a^2-2ab+b^2\)(4)
từ (1) và (2) => đpcm
a) VP= (a-b)^2 + 4ab
= a^2 - 2ab + b^2 + 4ab
= a^2 + 2ab + b^2
= (a+b)^2 = VT
Vậy ...
b) VP= (a+b)^2 - 4ab
= a^2 + 2ab + b^2 - 4ab
= a^2 - 2ab + b^2
= (a-b)^2 = VT
Vậy....
c) VP= (a+b)^3 - 3ab (a+b)
= a^3 + 3a^2b + 3ab^2 + b^3 - 3a^2b - 3ab^2
= a^3 + b^3 = VT
Vậy ....
a) Ta có: \(\left(a-b\right)^2+4ab=a^2-2ab+b^2+4ab=a^2+2ab+b^2=\left(a+b\right)^2\)
Vậy: (a+b)2 = (a-b)2 + 4ab.
b) Ta có: \(\left(a+b\right)^2-4ab=a^2+2ab+b^2-4ab=a^2-2ab+b^2=\left(a-b\right)^2\)
Vậy: (a-b)2 = (a+b)2 - 4ab
c) Ta có: \(\left(a+b\right)^3-3ab\left(a+b\right)=a^3+3a^2b+3ab^2+b^3-3a^2b-3ab^2=a^3+b^3\)
Vậy: a3 + b3 = (a+b)3 - 3ab(a+b)
Đúng nha!!
sửa đề chút nhé:
Chứng minh: (a-b)^2=(a+b)^2-4ab
Biến đổi vế trái ta có:
VT= a^2-2ab+b^2
VT= (a^2+2ab+b^2)-2ab-2ab
VT=(a+b)^2-4ab=VP
đpcm
Nguyễn Mộc Hạ Chi
Áp dụng:
a) Tính (a – b)2 , biết a + b = 7 và a . b = 12.
b) Tính (a + b)2 , biết a - b = 20 và a . b = 3.
Bài giải:
a) (a + b)2 = (a – b)2 + 4ab
- Biến đổi vế trái:
(a + b)2 = a2 +2ab + b2 = a2 – 2ab + b2 + 4ab
= (a – b)2 + 4ab
Vậy (a + b)2 = (a – b)2 + 4ab
- Hoặc biến đổi vế phải:
(a – b)2 + 4ab = a2 – 2ab + b2 + 4ab = a2 + 2ab + b2
= (a + b)2
Vậy (a + b)2 = (a – b)2 + 4ab
b) (a – b)2 = (a + b)2 – 4ab
Biến đổi vế phải:
(a + b)2 – 4ab = a2 +2ab + b2 – 4ab
= a2 – 2ab + b2 = (a – b)2
Vậy (a – b)2 = (a + b)2 – 4ab
Áp dụng: Tính:
a) (a – b)2 = (a + b)2 – 4ab = 72 – 4 . 12 = 49 – 48 = 1
b) (a + b)2 = (a – b)2 + 4ab = 202 + 4 . 3 = 400 + 12 = 412
\(\left(a-b\right)^2-\left(a-b\right)^2\)
\(=\left(a^2-2ab+b^2\right)-\left(a^2-2ab+b^2\right)\)
\(=\left(a^2-2ab+b^2\right)-a^2+2ab-b^2\)
Ak ủa đề kiểu gì v? Số đó trừ dj chính nó thì =0 chớ ch/m dj nữa
Câu 1:
a)BĐVT:\(\left(A+B\right)^2=A^2+2AB+B^2\)
\(=A^2-2AB+B^2+4AB\)
\(=\left(A-B\right)^2+4AB\left(BVT\right)\)
b)\(BĐVT:\left(A-B\right)^2=A^2-2AB+B^2\)
\(=A^2+2AB+B^2-4AB\)
\(=\left(A+B\right)^2-4AB\left(BVP\right)\)
Câu 1:
A=x^2- y^2=(x-y)(x+y)
Thay x=17, y=13 vào A, ta có: A= (17-13)(17+13)=4.30=120
=> Vậy A=120 tại x=17,y=13.
b, B= (2+1)(22+1)(24+1)(28+1)(216+1) (đề bài đúng)
= 1.(2+1)(22+1)(24+1)(28+1)(216+1)
= (2-1)(2+1)(22+1)(24+1)(28+1)(216+1)
= (22-1)(22+1)(24+1)(28+1)(216+1)
= (24-1)(24+1)(28+1)(216+1)
= (28-1)(28+1)(216+1)
= (216-1) (216+1)
= 232-1
=> B= = 232-1
Bài 1 :
a,Ta có :
\(A=x^2-y^2\)
\(=\left(x-y\right)\left(x+y\right)\)
Với x = 17 và y = 13 ta có :
\(A=\left(17-13\right)\left(17+13\right)\)
\(=4.30\)
\(=120\)
Vậy x = 120 với x = 17 và y = 13 .
b, Nhân biểu thức đã cho với ( 2 - 1 ) ta được :
\(\left(2-1\right)B=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(\Leftrightarrow\left(2-1\right)B=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(\Leftrightarrow1.B=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(\Leftrightarrow B=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(\Leftrightarrow B=\left(2^{16}-1\right)\left(2^{16}+1\right)\)
\(\Leftrightarrow B=2^{32}-1\)
dễ mà bạn ?
khai triển biểu thức ra ta được :
\(a^2-2ab+b^2=a^2+b^2+2ab-4ab\)
\(\Leftrightarrow a^2-2ab+b^2-a^2-b^2+4ab-2ab=0\)
\(\Leftrightarrow\left(a^2-a^2\right)+\left(b^2-b^2\right)+\left(-2ab-2ab+4ab\right)=0\)
\(\Leftrightarrow0+0+\left(4ab-4ab\right)=0\)
\(\Leftrightarrow0+0+0=0< =>0=0\)*đúng*