K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 10 2019

ai làm giúp mk vs ạ

4 tháng 10 2019

cái dề bài câu b : P= là ở trên í ạ

1 tháng 9 2018

b,Ap dung bdt cauchy schwarz dang engel ta co

\(B=\frac{x^2}{1}+\frac{y^2}{1}+\frac{z^2}{1}>=\frac{\left(x+y+z\right)^2}{3}=\frac{a^2}{3}\)

xay ra dau = khi x=y=z=a/3

18 tháng 7 2016

1) \(E^2=\frac{x^2-2xy+y^2}{x^2+2xy+y^2}=\frac{2\left(x^2+y^2\right)-4xy}{2\left(x^2+y^2\right)+4xy}=\frac{5xy-4xy}{5xy+4xy}=\frac{xy}{9xy}=\frac{1}{9}\)

\(\Rightarrow E=\frac{1}{3}\)(vì x>y>0)

2) Ta có \(x+y+z=0\Rightarrow x+y=1-z\)

Lại có : \(1=\left(x+y+z\right)^2=1+2\left(xy+yz+xz\right)\Rightarrow2xy+2yz+2xz=0\Rightarrow2xy=-2z\left(x+y\right)=-2z\left(1-z\right)\)Thay vào \(x^2+y^2+z^2=1\) được : 

\(\left(x+y\right)^2-2xy+z^2=1\)\(\Leftrightarrow\left(1-z\right)^2-2z\left(1-z\right)+z^2=1\Leftrightarrow4z^2-4z=0\Leftrightarrow z\left(z-1\right)=0\Leftrightarrow\orbr{\begin{cases}z=0\\z=1\end{cases}}\)

Với z = 0 => x + y = 1 và x2+y2 = 1 => x = 0 , y = 1 hoặc x = 1 , y =0

=> A = 1

Tương tự với z = 1 , ta cũng có x = 0 , y = 0 => A = 1

15 tháng 10 2017

Ta có : \(\left(x^2+y^2+z^2\right)\left(1^2+1^2+1^2\right)\le\left(x.1+y.1+z.1\right)^2\) (bđt Bunhiacopxki)

\(\Leftrightarrow x^2+y^2+z^2\le\frac{\left(x+y+z\right)^2}{3}\) hay \(1\le\frac{\left(x+y+z\right)^2}{3}\)

\(\Rightarrow\left(x+y+z\right)^2\ge3\Rightarrow x+y+z\ge\sqrt{3}\) (do x;y;z dương)

Áp dụng bđt AM - GM ta có :

\(\frac{xy}{z}+\frac{yz}{x}\ge2\sqrt{\frac{xy}{z}.\frac{yz}{x}}=2y\)

\(\frac{xy}{z}+\frac{xz}{y}\ge2\sqrt{\frac{xy}{z}.\frac{xz}{y}}=2x\)

\(\frac{yz}{x}+\frac{xz}{y}\ge2\sqrt{\frac{yz}{x}.\frac{xz}{y}}=2z\)

Cộng vế với vế ta được :

\(2C\ge2\left(x+y+z\right)=2\sqrt{3}\Rightarrow C\ge\sqrt{3}\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=z=\frac{1}{\sqrt{3}}\)

15 tháng 10 2017

Đức Hùng hình như áp dụng sai  ( ngược dấu ) BĐT Bunhiacopxki rồi

24 tháng 11 2019

Vì x,y,z dương = > x2019 ; y2019 ; z2019 

Ta có : 3 = 1 + 1 + 1 hoặc = 1 + 2 + 0

Mà nếu một số = 2 ( g/s là x2019 ) = > x ko là số dương = > Loại trường hợp có số hạng 2

= > x2019 + y2019 + z2019 = 1 + 1 + 1

= > x2019 = y2019 = z2019 = 1 = > x = y = z = 1

= > M = x2 + y2 + z2 = 12 + 12 + 12 = 1 + 1 + 1 = 3

Vậy M = 3

3 tháng 6 2016

\(\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+bc+ca\right)=1+2\left(ab+bc+ca\right).\)

\(\Rightarrow A=\left(ab+bc+ca\right)=\frac{1}{2}\left(a+b+c\right)^2-\frac{1}{2}\ge-\frac{1}{2}\)với mọi a,b,c

Vậy A nhỏ nhất bằng -1/2 khi a+b+c =0

29 tháng 5 2022

Ta có : \((x-\dfrac{1}{3})^2+(y-\dfrac{1}{3})^2+(z-\dfrac{1}{3})^2>=0\)

\(=>x^2+y^2+z^2-\dfrac{2}{3}(x+y+z)+\dfrac{1}{3}\ge0\)

\(=>x^2+y^2+z^2+\dfrac{1}{3}\ge\dfrac{2}{3}(x+y+z)\)

\(=>1+\dfrac{1}{3}=\dfrac{4}{3}\ge\dfrac{2}{3}(x+y+z)\)

\(=>x+y+z\le2\)

Do đó : \((a+b+c)^2=a^2+b^2+c^2+2(ab+bc+ca)=1+2(ab+bc+ca).\)

\(=>A=(ab+ac+bc)=\dfrac{1}{2}(a+b+c)^2-\dfrac{1}{2}\le\dfrac{1}{2}.2^2-\dfrac{1}{2}=\dfrac{3}{2}\)