Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1a
\(A=\frac{3}{2ab}+\frac{1}{2ab}+\frac{1}{a^2+b^2}+\frac{a^4+b^4}{2}\ge\frac{6}{\left(a+b\right)^2}+\frac{4}{\left(a+b\right)^2}+\frac{\frac{\left(a^2+b^2\right)^2}{2}}{2}\)
\(\ge10+\frac{\left[\frac{\left(a+b\right)^2}{2}\right]^2}{4}=10+\frac{1}{16}=\frac{161}{16}\)
Dau '=' xay ra khi \(a=b=\frac{1}{2}\)
Vay \(A_{min}=\frac{161}{16}\)
1b.\(B=\frac{1}{2ab}+\frac{1}{2ab}+\frac{1}{a^2+b^2}+\frac{a^8+b^8}{4}\ge\frac{2}{\left(a+b\right)^2}+\frac{4}{\left(a+b\right)^2}+\frac{\frac{\left(a^4+b^4\right)^2}{2}}{4}\)
\(\ge6+\frac{\left[\frac{\left(a^2+b^2\right)^2}{2}\right]^2}{8}\ge6+\frac{\left[\frac{\left(a+b\right)^2}{2}\right]^2}{32}=6+\frac{1}{128}=\frac{769}{128}\)
Dau '=' xay ra khi \(a=b=\frac{1}{2}\)
Vay \(B_{min}=\frac{769}{128}\)khi \(a=b=\frac{1}{2}\)
By Titu's Lemma we easy have:
\(D=\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\)
\(\ge\frac{\left(x+y+\frac{1}{x}+\frac{1}{y}\right)^2}{2}\)
\(\ge\frac{\left(x+y+\frac{4}{x+y}\right)^2}{2}\)
\(=\frac{17}{4}\)
Mk xin b2 nha!
\(P=\frac{1}{x^2+y^2}+\frac{1}{xy}+4xy=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}+4xy\)
\(\ge\frac{\left(1+1\right)^2}{x^2+y^2+2xy}+\left(4xy+\frac{1}{4xy}\right)+\frac{1}{4xy}\)
\(\ge\frac{4}{\left(x+y\right)^2}+2\sqrt{4xy.\frac{1}{4xy}}+\frac{1}{\left(x+y\right)^2}\)
\(\ge\frac{4}{1^2}+2+\frac{1}{1^2}=4+2+1=7\)
Dấu "=" xảy ra khi: \(x=y=\frac{1}{2}\)
a,
Có : 1/x + 1/y >= 4/x+y = 4/1 = 4
Dấu "=" xảy ra <=> x=y=1/2
Vậy ..............
b, Áp dụng bđt sovac ta có :
a^2/x + b^2/y >= (a+b)^2/x+y = (a+b)^2 >= 0
Dấu "=" xảy ra <=> x=y=1/2 và a=-b
Vậy ..............
Tk mk nha
câu c áp dụng \(a^2+b^2\ge\frac{1}{2}\left(a+b\right)^2\) và \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)bạn tự giải nhá.
1/a/
\(A=\frac{2}{xy}+\frac{3}{x^2+y^2}=\left(\frac{1}{xy}+\frac{1}{xy}+\frac{4}{x^2+y^2}\right)-\frac{1}{x^2+y^2}\)
\(\ge\frac{\left(1+1+2\right)^2}{\left(x+y\right)^2}-\frac{1}{\frac{\left(x+y\right)^2}{2}}=16-2=14\)
Dấu = xảy ra khi \(x=y=\frac{1}{2}\)
b/
\(4B=\frac{4}{x^2+y^2}+\frac{8}{xy}+16xy=\left(\frac{4}{x^2+y^2}+\frac{1}{xy}+\frac{1}{xy}\right)+\left(\frac{1}{xy}+16xy\right)+\frac{5}{xy}\)
\(\ge\frac{\left(1+1+2\right)^2}{\left(x+y\right)^2}+2\sqrt{\frac{1}{xy}.16xy}+\frac{5}{\frac{\left(x+y\right)^2}{4}}\)
\(=16+8+20=44\)
\(\Rightarrow B\ge11\)
Dấu = xảy ra khi \(x=y=\frac{1}{2}\)
Nhân cả 2 vế với a+b+c
Chứng minh \(\frac{a}{b}+\frac{b}{a}\ge2\) tương tự với \(\frac{b}{c}+\frac{c}{b};\frac{c}{a}+\frac{a}{c}\)
\(\Leftrightarrow\frac{a}{b}+\frac{b}{a}-2\ge0\Leftrightarrow\frac{a^2-2ab+b^2}{ab}\ge0\Leftrightarrow\frac{\left(a-b\right)^2}{ab}\ge0\)luôn đúng do a;b>0
dễ rồi nhé
b) \(P=\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+1}\)
\(P=\left(\frac{x+1}{x+1}+\frac{y+1}{y+1}+\frac{z+1}{z+1}\right)-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\)
\(P=\left(1+1+1\right)-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\)
\(P=3-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\)
Áp dụng bđt Cauchy Schwarz dạng Engel (mình nói bđt như vậy,chỗ này bạn cứ nói theo cái bđt đề bài cho đi) ta được:
\(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\ge\frac{\left(1+1+1\right)^2}{x+1+y+1+z+1}=\frac{9}{4}\)
=>\(P=3-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\le3-\frac{9}{4}=\frac{3}{4}\)
=>Pmax=3/4 <=> x=y=z=1/3
Sửa đề: Cho a , b ,c dương thỏa mãn: a + b + c = 6abc . Phần dưới vẫn như vậy.
Ta có thể viết:
\(Q=\frac{bc}{a^3\left(c+2b\right)}+\frac{ca}{b^3\left(a+2c\right)}+\frac{ab}{c^3\left(b+2a\right)}\Leftrightarrow Q=\frac{1}{a^3}+\frac{bc}{c+2b}+\frac{1}{b^3}+\frac{ca}{a+2c}+\frac{1}{c^3}+\frac{ab}{b+2a}\)
\(\Rightarrow a=b=c\)
\(\Leftrightarrow Q=\frac{1}{a^3b^3c^3}+\frac{bc}{c+2b}+\frac{ca}{a+2c}+\frac{ab}{b+2a}\Leftrightarrow\frac{1}{\left[\left(a\right)\left(b\right)\left(c\right)\right]^9}+\frac{bc}{c+2b}+\frac{ca}{a+2c}+\frac{ab}{b+2a}\)
Do đó:
\(Q^9=\frac{1}{\left[\left(a\right)\left(b\right)\left(c\right)\right]}\Rightarrow Q^9\ge0\) , mà a , b ,c thỏa mãn a + b + c = 6abc
Vậy GTNN của Q là: 6000 : 9 = 666,6
Vậy dấu "=" xảy ra khi và chỉ khi \(\frac{1}{\left[\left(a\right)\left(b\right)\left(c\right)\right]}=666,6\)
\(\Rightarrow Q\) đạt GTNN bằng 666,6 và khi a =b =c = 666,6
Ps: Giải chơi nhé! Đừng làm theo! Mình không chịu trách nhiệm hay bất cứ hình phạt nào như: Trừ điểm hỏi đáp, hack nic mình đâu nhé!
Ez mà man:) t dùng bđt tiếp tục;)
Bài 1: Đơn giản nên t dùng hđt:)
a) Xét hiệu \(A-2xy=\left(x^2-2xy+y^2\right)=\left(x-y\right)^2\ge0\Rightarrow A\ge2xy=12\)
Đẳng thức xảy ra khi x = y; xy = 6 suy ra \(x=y=\sqrt{6}\)
Vậy...
b) Đặt B =xy. Ta có: \(\frac{\left(x+y\right)^2}{4}-B=\frac{\left(x+y\right)^2-4B}{4}=\frac{\left(x+y\right)^2-4xy}{4}=\frac{\left(x-y\right)^2}{4}\ge0\)
Nên \(B\le\frac{\left(x+y\right)^2}{4}=\frac{5^2}{4}=\frac{25}{4}\)
Đẳng thức xảy ra khi x = y = \(\frac{5}{2}\)
1/ a/ \(A=x^2+y^2\ge2xy=16\)
\(A_{min}=12\) khi \(x=y=\sqrt{6}\)
b/ \(B=xy\le\frac{\left(x+y\right)^2}{4}=\frac{25}{4}\)
\(B_{max}=\frac{25}{4}\) khi \(x=y=\frac{5}{2}\)
2/
\(P=\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge\left(a+b+c\right).\frac{9}{a+b+c}=9\)
\(P_{min}=9\) khi \(a=b=c\)
\(P=\frac{\frac{1}{a^2}}{\frac{1}{b}+\frac{1}{c}}+\frac{\frac{1}{b^2}}{\frac{1}{a}+\frac{1}{c}}+\frac{\frac{1}{c^2}}{\frac{1}{a}+\frac{1}{b}}\)
Đặt \(\hept{\begin{cases}x=\frac{1}{a}\\y=\frac{1}{b}\\z=\frac{1}{c}\end{cases}}\Rightarrow xyz=1\Rightarrow P=\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\)
Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:
\(P\ge\frac{\left(x+y+z\right)^2}{y+z+x+z+x+y}=\frac{x+y+z}{2}\ge\frac{3\sqrt[3]{xyz}}{2}=\frac{3}{2}\)
Dấu "=" xảy ra khi \(x=y=z\Leftrightarrow a=b=c=1\)
Cần cách khác thì nhắn cái
1.
Ta có: \(\frac{2a+3b+3c+1}{2015+a}+\frac{3a+2b+3c}{2016+b}+\frac{3a+3b+2ac-1}{2017+c}\)
\(=\frac{b+c+4033}{2015+a}+\frac{c+a+4032}{2016+b}+\frac{a+b+4031}{2017+c}\)
Đặt \(\hept{\begin{cases}2015+a=x\\2016+b=y\\2017+c=z\end{cases}}\)
\(P=\frac{b+c+4033}{2015+a}+\frac{c+a+4032}{2016+b}+\frac{a+b+4031}{2017+c}\)
\(=\frac{y+z}{x}+\frac{z+x}{y}+\frac{x+y}{z}=\frac{y}{x}+\frac{z}{x}+\frac{z}{y}+\frac{x}{y}+\frac{x}{z}+\frac{y}{z}\)
\(\ge2\sqrt{\frac{y}{x}\cdot\frac{x}{y}}+2\sqrt{\frac{z}{x}\cdot\frac{x}{z}}+2\sqrt{\frac{y}{z}\cdot\frac{z}{y}}\left(Cosi\right)\)
Dấu "=" <=> x=y=z => \(\hept{\begin{cases}a=673\\b=672\\c=671\end{cases}}\)
Vậy Min P=6 khi a=673; b=672; c=671
Câu 1 thử cộng 3 vào P xem
Rồi áp dụng BDT Cauchy - Schwars : a^2/x + b^2/y + c^2/z ≥(a + b + c)^2/(x + y + z)