Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
{ x + 5y = 21 (1)
{ 2x + 3z = 51 (2)
. Ta có : (1) <=> x = 21 - 5y
mà y ≥ 0 --> 21 - 5y ≤ 21 --> x ≤ 21
. (2) <=> 3z = 51 - 2z ≥ 51 - 2.42 = 9 ( do x ≤ 21 --> -2x ≥ - 42)
--> 3z ≥ 9 <=> z ≥ 3
- nhân 2 vế của (2) với 2 rồi cộng với (1) ta có
5x + 5y + 6z = 123
<=> 5x + 5y + 5z = 123 - z
<=> 5M = 123 - z
. theo trên ta có z ≥ 3 --> 123 - z ≤ 123 - 3 = 120
--> 5M ≤ 120 <=> M ≤ 24
Dấu " = " xảy ra <=> x = 21 ; y = 0 ; z = 3
Ta có :\(\frac{x}{4y+z}=\frac{y}{4z+x}=\frac{z}{4x+y}=\frac{x+y+z}{4y+z+4z+x+4x+y}=\frac{x+y+z}{5\left(x+y+z\right)}=\frac{1}{5}\)
=> \(\hept{\begin{cases}\frac{x}{4y+z}=\frac{1}{5}\\\frac{y}{4z+x}=\frac{1}{5}\end{cases}}\Rightarrow\hept{\begin{cases}\frac{x}{4y+z}=\frac{1}{5}\\\frac{4z+x}{y}=5\end{cases}}\)
Khi đó A = 2019 - 1/5 + 5 = 2023,8
\(\frac{x}{4y+z}=\frac{y}{4z+x}=\frac{z}{4x+y}=\frac{x+y+z}{4y+z+4z+x+4x+y}=\frac{x+y+z}{5\left(x+y+z\right)}=\frac{1}{5}\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{4y+z}=\frac{1}{5}\\\frac{y}{4z+x}=\frac{1}{5}\end{cases}\Rightarrow\hept{\begin{cases}\frac{x}{4y+z}=\frac{1}{5}\\\frac{4z+x}{y}=5\end{cases}}}\)
Khi đó \(A=2019-\frac{1}{5}+5=2013,8\)
1,
( x+y+z) lớn hơn bằng 3. căn bậc 3 của xyz
( x+y+z) ^ 3 lớn hơn bằng 27. xyz
x + y + z = 1 nên 27.xyz nhỏ hơn bằng 1
xyz nhỏ hơn bằng 1/27
dấu bằng xảy ra khi x = y = z = 1/3...
câu b tương tự .... mấy lâu bận nên ko giải được ... xin lỗi nhé