Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x}{6}=\frac{y}{2}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{x}{6}=\frac{y}{2}=\frac{x-y}{6-2}=-\frac{12}{4}=-3\Leftrightarrow\hept{\begin{cases}x=-3.6=-18\\y=-3.2=-6\end{cases}}\)
\(x+y=\left(-18\right)+\left(-6\right)=-24\)
a/b=c/d=k
=>a=bk; c=dk
\(\dfrac{3b+5d}{3a+5c}=\dfrac{3b+5d}{3bk+3dk}=\dfrac{1}{k}\)
\(\dfrac{b-2d}{a-2c}=\dfrac{b-2d}{bk-2dk}=\dfrac{1}{k}\)
=>\(\dfrac{3b+5d}{3a+5c}=\dfrac{b-2d}{a-2c}\)
b: \(\dfrac{ab}{a^2-b^2}=\dfrac{bk\cdot b}{b^2k^2-b^2}=\dfrac{k}{k^2-1}\)
\(\dfrac{cd}{c^2-d^2}=\dfrac{dk\cdot d}{d^2k^2-d^2}=\dfrac{k}{k^2-1}\)
=>ab/a^2-b^2=cd/c^2-d^2
c: \(\dfrac{a^2+b^2}{\left(a+b\right)^2}=\dfrac{b^2k^2+b^2}{\left(bk+b\right)^2}=\dfrac{k^2+1}{\left(k+1\right)^2}\)
\(\dfrac{c^2+d^2}{\left(c+d\right)^2}=\dfrac{d^2k^2+d^2}{\left(dk+d\right)^2}=\dfrac{k^2+1}{\left(k+1\right)^2}\)
=>\(\dfrac{a^2+b^2}{\left(a+b\right)^2}=\dfrac{c^2+d^2}{\left(c+d\right)^2}\)